CS208 (Semester 1) Week 9 : Equality and Arithmetic

Dr. Robert Atkey

Computer \& Information Sciences

Equality and Arithmetic, Part 1
Rules for Equality

Equality and Arithmetic, Part 1: Rules for Equality

What is Equality?

$$
\mathrm{t}_{1}=\mathrm{t}_{2}
$$

What is Equality?

Some properties:

1. Reflexivity: for all $x, x=x$
2. Symmetry: for all x and y, if $x=y$ then $y=x$
3. Transitivity: for all x, y and z, if $x=y$ and $y=z$, then $x=z$

What is Equality?

Some properties:

1. Reflexivity: for all $x, x=x$
2. Symmetry: for all x and y, if $x=y$ then $y=x$
3. Transitivity: for all x, y and z, if $x=y$ and $y=z$, then $x=z$

Any binary relation that satisfies these properties is called an equivalence relation.

What is Equality?

The special property of equality is the following:

If $s=t$, then everything that is true about s is true about t.

What is Equality?

The special property of equality is the following:

If $s=t$, then everything that is true about s is true about t.
(and vice versa. but do we need to say this?)

What is Equality?

The special property of equality is the following:

If $s=t$, then everything that is true about s is true about t.
(and vice versa. but do we need to say this?)
Gottfried Leibniz (co-inventor of Calculus) took this as the definition of equality.

What is Equality?

With more symbols:

$$
\text { If } t_{1}=t_{2} \text {, then for all } P \text {, if } P\left[x \mapsto t_{1}\right] \text { then } P\left[x \mapsto t_{2}\right]
$$

What is Equality?

All we will need is:

1. Reflexivity: for every term $t, t=t$
2. Substitution: $t_{1}=t_{2}$ and $P\left[x \mapsto t_{1}\right]$ implies $P\left[x \mapsto t_{2}\right]$

Amazingly, this is enough!

Symmetry

To prove that $x=y$ implies $y=x$:

1. We know that $x=x$ by reflexivity
2. So we use our assumption to replace the first x by y to get $y=x$.

Transitivity

To prove that $x=y$ and $y=z$ implies $x=z$:

1. Substitute the second assumption in the first to get $x=z$.

Rules for Equality: Introduction

$$
\overline{\Gamma \vdash \mathrm{t}=\mathrm{t}} \text { Reflexivity }
$$

Every term is equal to itself.

Rules for Equality: Elimination

$$
\frac{\Gamma \vdash \mathrm{P}\left[\mathrm{x} \mapsto \mathrm{t}_{2}\right]}{\Gamma\left[\mathrm{t}_{1}=\mathrm{t}_{2}\right] \vdash \mathrm{P}\left[\mathrm{x} \mapsto \mathrm{t}_{1}\right]} \text { SUBST }
$$

If we know that $t_{1}=t_{2}$ then we can replace t_{1} with t_{2} in the goal. This is substitution backwards: if we know $P\left[x \mapsto t_{2}\right]$ and $t_{1}=t_{2}$, then we know $\mathrm{P}\left[\mathrm{x} \mapsto \mathrm{t}_{1}\right]$.

Example: Symmetry

Example: Transitivity

$$
\begin{aligned}
& \overline{\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{x}=\mathrm{y}, \mathrm{y}=\mathrm{z}[\mathrm{y}=\mathrm{z}] \vdash \mathrm{y}=\mathrm{z}} \mathrm{D} \text { UNE } \\
& \mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{x}=\mathrm{y}, \mathrm{y}=\mathrm{z} \vdash \mathrm{y}=\mathrm{z} \\
& \mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{x}=\mathrm{y}, \mathrm{y}=\mathrm{z}[\mathrm{x}=\mathrm{y}] \vdash \mathrm{x}=\mathrm{z} \\
& \hline \mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{x}=\mathrm{y}, \mathrm{y}=\mathrm{z} \vdash \mathrm{x}=\mathrm{z} \\
& \hline \mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{x}=\mathrm{y} \vdash \mathrm{y}=\mathrm{y}=\mathrm{z} \rightarrow \mathrm{x}=\mathrm{z} \\
& \hline \mathrm{x}, \mathrm{y}, \mathrm{z} \vdash \mathrm{x}=\mathrm{y} \rightarrow \mathrm{y}=\mathrm{z} \rightarrow \mathrm{x}=\mathrm{z} \\
& \hline \mathrm{x}, \mathrm{y} \vdash \forall \mathrm{z} \cdot \mathrm{x}=\mathrm{y} \rightarrow \mathrm{y}=\mathrm{z} \rightarrow \mathrm{x}=\mathrm{z} \\
& \hline \mathrm{x} \vdash \forall \mathrm{y} . \forall \mathrm{z} \cdot \mathrm{x}=\mathrm{y} \rightarrow \mathrm{y}=\mathrm{z} \rightarrow \mathrm{x}=\mathrm{z} \\
& \hline \vdash \forall \mathrm{I} \text { IRODUCE } \\
& \hline \forall \mathrm{x} . \forall \mathrm{y} . \forall \mathrm{z} \cdot \mathrm{x}=\mathrm{y} \rightarrow \mathrm{y}=\mathrm{z} \rightarrow \mathrm{x}=\mathrm{z}
\end{aligned}
$$

Rewriting

1. Subst can be quite tricky to use because we have to give a formula P such that $P\left[x \mapsto t_{1}\right]$ is the one we start with, and $P\left[x \mapsto t_{2}\right]$ is the one we end up with.
2. Usually, we want to replace every occurrence of t_{1} with t_{2}. We write this as:

$$
\mathrm{P}\left\{\mathrm{t}_{1} \mapsto \mathrm{t}_{2}\right\}
$$

Rewriting

$$
\frac{\Gamma \vdash \mathrm{P}\left\{\mathrm{t}_{1} \mapsto \mathrm{t}_{2}\right\}}{\Gamma\left[\mathrm{t}_{1}=\mathrm{t}_{2}\right] \vdash \mathrm{P}} \text { Rewrite } \rightarrow
$$

If we have $t_{1}=t_{2}$ then we can replace t_{1} with t_{2} everywhere.

Rewriting

For convenience:

$$
\frac{\Gamma \vdash \mathrm{P}\left\{\mathrm{t}_{2} \mapsto \mathrm{t}_{1}\right\}}{\Gamma\left[\mathrm{t}_{1}=\mathrm{t}_{2}\right] \vdash \mathrm{P}} \text { REWRITE } \leftarrow
$$

If we have $t_{1}=t_{2}$ then we can replace t_{1} with t_{2} everywhere.

Summary

Equality is characterised by two principles:

1. Everything is equal to itself (reflexivity)
2. If $s=t$, then everything that is true about s is true about t.

Equality and Arithmetic, Part 2
Arithmetic and Induction

Arithmetic

One thing we might want to do with Predicate Logic is reason about numbers:

- $\forall x \cdot \forall y \cdot x+y=y+x$
- $\forall x \cdot \forall y \cdot \forall z \cdot x+(y+z)=(x+y)+z$
- $\forall x . \forall y . \forall z . x \times(y+z)=(x \times y)+(x \times z)$
$-\forall \mathrm{n} . \mathrm{n}>2 \rightarrow \neg\left(\exists \mathrm{x} \cdot \exists \mathrm{y} . \exists z . \mathrm{x}^{\mathrm{n}}+\mathrm{y}^{\mathrm{n}}=z^{\mathrm{n}}\right)$

Representation of Numbers

To make thing easier, we use a unary representation of numbers:
A number is either:

1. 0 or
2. $S(n)$, where n is a number.

For example, 5 is represented as $S(S(S(S(0)))))$.
This is massively inefficient, but makes reasoning easier.

Axioms

We can now write down some plausible axioms for arithmetic.

Axiom 1

$$
\forall x . \neg(0=S(x))
$$

0 is not the successor of any number.

Axiom 2

$$
\forall x . \forall y . S(x)=S(y) \rightarrow x=y
$$

If two successors are equal, the things they are successors of must be equal.

This is a way of saying "successor goes on forever". If we had a loop such that $S(x)$ was equal to some number y less than x, then this axiom would not hold.

Axioms 3 and 4

$$
\begin{aligned}
& \forall x \cdot \operatorname{add}(0, x)=x \\
& \forall x \cdot \forall y \cdot \operatorname{add}(S(x), y)=S(\operatorname{add}(x, y))
\end{aligned}
$$

1. Adding 0 to x gives x, i.e., $0+x=x$
2. $(1+x)+y=1+(x+y)$.

These axioms define addition.

Axioms 5 and 6

$$
\forall x \cdot \operatorname{mul}(0, x)=0
$$

$$
\forall x . \forall y \cdot \operatorname{mul}(S(x), y)=\operatorname{add}(y, \operatorname{mul}(x, y))
$$

1. $0 \times x=0$
2. $(1+x) \times y=y+(x \times y)$

These axioms define multiplication.

Peano's Axioms (not all of them)

1. $\forall x . \neg(0=S(x))$
2. $\forall x . \forall y \cdot S(x)=S(y) \rightarrow x=y$
3. $\forall x \cdot \operatorname{add}(0, x)=x$
4. $\forall x \cdot \forall y \cdot \operatorname{add}(S(x), y)=S(\operatorname{add}(x, y))$
5. $\forall x \cdot \operatorname{mul}(0, x)=0$
6. $\forall x \cdot \forall y \cdot \operatorname{mul}(S(x), y)=\operatorname{add}(y, \operatorname{mul}(x, y))$
(named after Guiseppe Peano)

What can we prove?

Can do computation:

$$
\begin{aligned}
& \operatorname{add}(S(S(0)), S(S(S(0))))=S(S(S(S(S(0))))) \\
& (2+3=5)
\end{aligned}
$$

But can't prove anything for all numbers:

$$
\forall x . \forall y . x+y=y+x
$$

is not provable yet.

Induction

To prove things for all numbers, we use the principle of induction:
To prove for all $x, P(x)$, we must:

- Prove P(0)
- For all n, prove that $P(n)$ implies $P(S(n))$
(this is the main reason we use the unary representation)
The assumption $P(n)$ in part 2 is called the induction hypothesis.

Example (informal)

To prove $\operatorname{add}(x, 0)=x$ by induction on x :

1. Need to prove that $\operatorname{add}(0,0)=0$, which is axiom 3 .
2. Need to prove if $\operatorname{add}(n, 0)=n$, then $\operatorname{add}(S(n), 0)=S(n)$:
2.1 We have $\operatorname{add}(S(n), 0)=S(\operatorname{add}(n, 0))$ by axiom 4 ; and 2.2 so $S(\operatorname{add}(n, 0))=S(n)$ by the induction hypothesis

Induction as a Rule

$$
\frac{\Gamma \vdash \mathrm{P}[\mathrm{x} \mapsto 0] \quad}{} \quad \Gamma, \mathrm{x}_{1}, \mathrm{P}\left[\mathrm{x} \mapsto \mathrm{x}_{1}\right] \vdash \mathrm{P}\left[\mathrm{x} \mapsto \mathrm{~S}\left(\mathrm{x}_{1}\right)\right] \text { Induction }
$$

where x is declared in Γ.

Peano's Axioms

1. $\forall x . \neg(0=S(x))$
2. $\forall x \cdot \forall y \cdot S(x)=S(y) \rightarrow x=y$
3. $\forall x \cdot \operatorname{add}(0, x)=x$
4. $\forall x \cdot \forall y \cdot \operatorname{add}(S(x), y)=S(\operatorname{add}(x, y))$
5. $\forall x \cdot \operatorname{mul}(0, x)=0$
6. $\forall x . \forall y \cdot \operatorname{mul}(S(x), y)=\operatorname{add}(y, \operatorname{mul}(x, y))$

+ induction

Summary

We can reason about arithmetic using Peano's Axioms.

- 6 axioms defining $0, S$, add and mul
- and induction

This system is surprisingly powerful.

Summary

We can reason about arithmetic using Peano's Axioms.

- 6 axioms defining $0, S$, add and mul
- and induction

This system is surprisingly powerful.
In fact, it is too powerful, as we shall see next week.

