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Metatheory of Predicate Logic, Part 1

Metatheory
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1. Is our proof system sound and complete?
2. Are our axiomatisations complete enough?
3. Can we automate mathematics?
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Metatheory of Predicate Logic, Part 1: Metatheory

Soundness

The proof system we have seen so far is sound:

Γ ⊢ Q ⇒ Γ |= Q

“Every provable judgement is valid.”
Can be checked by checking that every rule preserves validity.
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Metatheory of Predicate Logic, Part 1: Metatheory

Completeness

If we add a rule for excluded middle (P ∨ ¬P for any formula P),
then it is complete:

Γ |= Q ⇒ Γ ⊢ Q

“Every valid judgement is provable.”
This is not a simple fact. “Gödel’s Completeness Theorem”
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Metatheory of Predicate Logic, Part 1: Metatheory

Automating Mathematics?

If our proof system is sound and complete, then we should be able
to automatically prove things by searching for proofs?

This is one of the oldest branches of AI.
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Metatheory of Predicate Logic, Part 1: Metatheory

Automating Mathematics?

We have seen so far that there are many axiomatisations for
describing certain bits of mathematics:
1. Monoid axioms: addition with a zero.
2. Peano’s axioms: arithmetic
3. Zermelo-Frankel axioms: set theory

Are these axiomatisations suitable for finding proofs?
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Metatheory of Predicate Logic, Part 1: Metatheory

Syntactic Completeness

An axiomatisation Ax is syntactically complete if for all formulas P,
we can prove one of:

Ax ⊢ P

or
Ax ⊢ ¬P

if we can prove both, then the theory is inconsistent.
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Metatheory of Predicate Logic, Part 1: Metatheory

Effectively Generatable

An axiomatisation Ax is effectively generatable if we can write a
computer program that generates all the valid axioms.

There may be infinitely many axioms, but each one will eventually
be generated.
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Metatheory of Predicate Logic, Part 1: Metatheory

Automation
If an axiomatisation Ax is syntactically complete and effectively
generatable, then we can (in principle) write a program to search
for a proof of some P:

1. Search for a proof Ax ⊢ P

try proofs of size 1, then proofs of size 2, then proofs of size 3…
2. Interleaved with this: search for a proof of Ax ⊢ ¬P

Since one of them is provable, we will eventually terminate.
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Is every interesting axiomatisation syntactically complete?
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Metatheory of Predicate Logic, Part 1: Metatheory

Peano’s axioms (PA)
1. ∀x. ¬(0 = S(x))

2. ∀x.∀y. S(x) = S(y) → x = y

3. ∀x. add(0, x) = x

4. ∀x.∀y. add(S(x), y) = S(add(x, y))

5. ∀x. mul(0, x) = 0

6. ∀x.∀y. mul(S(x), y) = add(y,mul(x, y))

+ induction

is effectively generatable.
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Metatheory of Predicate Logic, Part 1: Metatheory

Robinson’s axioms (Q)

1. ∀x. ¬(0 = S(x))

2. ∀x.∀y. S(x) = S(y) → x = y

3. ∀x. add(0, x) = x

4. ∀x.∀y. add(S(x), y) = S(add(x, y))

5. ∀x. mul(0, x) = 0

6. ∀x.∀y. mul(S(x), y) = add(y,mul(x, y))

7. ∀x.(x = 0)∨ (∃y.x = S(y)) (instead of induction)
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Metatheory of Predicate Logic, Part 1: Metatheory

Gödel’s 1st Incompleteness Theorem

For any effectively generatable consistent set of axioms Ax that
imply those of Robinson arithmetic, there exists a formula P such
that it is not possible to prove either of

Ax ⊢ P

or
Ax ⊢ ¬P
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Metatheory of Predicate Logic, Part 1: Metatheory

Consequences

PA is not syntactically complete, so our attempt to use it to
automate mathematics fails.

In fact, provability in PA is undecidable, so all attempts are
doomed.
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Metatheory of Predicate Logic, Part 1: Metatheory

Consequences

1. PA is incomplete, so there is a formula P such that neither of:

PA ⊢ P and PA ⊢ ¬P

are provable.
2. Inspection of Gödel’s proof shows that the formula P it

generates is actually true in “the” natural numbers.
3. So we could use the axioms PA+ P, but then goto 1.
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Metatheory of Predicate Logic, Part 1: Metatheory

Consequences

So:
1. PA does not cover everything that is “true” about arithmetic
2. Every attempt to fix it is doomed
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Metatheory of Predicate Logic, Part 1: Metatheory

Consequences
Some people have said that Gödel’s Incompleteness theorem shows
that there are fundamental limitations to what computers can
reason about.

The reasoning (roughly) goes:
1. Computers can only use effectively generatable axioms
2. This means that there are truths they cannot prove
3. Humans can perceive “real” truth to see these truths
4. Therefore, Humans are better than computers, and AI is

impossible.
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Metatheory of Predicate Logic, Part 1: Metatheory

Consequences

Two problems with this:
1. Humans only know that the formula generated by Gödel’s

Incompleteness Theorem is true by some larger axiomatisation
we are (maybe implicitly) using. Computers can use this
axiomatisation.

2. The theorem depends on the theory being consistent. How do
we know this? Definitely not obvious for Zermelo-Frankel set
theory.
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Metatheory of Predicate Logic, Part 1: Metatheory

(In)Completeness?

Gödel proved:
1. Completeness “Everything that is true is provable”
2. Incompleteness “There exist true things that are not provable”

Surely a contradiction?
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Metatheory of Predicate Logic, Part 1: Metatheory

(In)Completeness?

There is no contradiction.

Completeness Theorem says that if something is true in every
model of the axioms, it is provable.

Incompleteness Theorem only gives something that is true for “the”
natural numbers. It might be false in other models.
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Metatheory of Predicate Logic, Part 1: Metatheory

Automating Mathematics?
If we can’t completely automate arithmetic, then what can we do?
1. Do proof search with a timeout
2. Restrict to weaker systems to gain decidability, e.g.:

▶ Pure equality
▶ Linear Arithmetic: only addition, no multiplication

Automated proof for fragments of logic is a large and ongoing topic
of research, with applications in software engineering, computer
security, optimisation, …
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Metatheory of Predicate Logic, Part 1: Metatheory

Summary

1. Our proof system is sound
2. If we add excluded middle, it is complete
3. Gödel’s Incompleteness theorem:

▶ If some axioms can prove basic facts about arithmetic, then there are
statements that it can neither prove nor disprove.

4. Not every theory is decidable, but some useful ones are.
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