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This paper clarifies that linear implication defines a branching-time preorder, preserved in all
contexts, when used to compare embeddings of process in non-commutative logic. The logic
considered is a first-order extension of the proof system BV featuring a de Morgan dual pair of
nominal quantifiers, called BV1. An embedding of π-calculus processes as formulae in BV1 is
defined, and the soundness of linear implication in BV1 with respect to a notion of weak simulation
in the π-calculus is established. A novel contribution of this work is that we generalise the notion of
a “left proof” to a class of formulae sufficiently large to compare embeddings of processes, from
which simulating execution steps are extracted. We illustrate the expressive power of BV1, by
demonstrating results extend to the internal π-calculus, where privacy of inputs is guaranteed. We
also remark that linear implication is strictly finer than any interleaving preorder.

1. Introduction

This paper contributes to a line of work formally relating logic and process calculi. The main
interest is formally relating implication in a logical system to preorders over processes. In early
work, Miller (1993), this is done by embedding processes as formulae in a fragment of linear
logic, formulated in a sequent calculus, and by interpreting implication as a form of may testing
preorder. We continue this investigation, but using a more general proof system based on the
calculus of structures, Brünnler and Tiu (2001); Guglielmi and Straßburger (2001). The calculus
of structures is a generalisation of the sequent calculus in which proof systems can be designed
that cannot be expressed in the sequent calculus, Tiu (2006), notably the non-commutative logic
BV, Guglielmi (2007), and its extensions NEL, Guglielmi and Straßburger (2011); Straßburger
and Guglielmi (2011), and MAV, Horne (2015).

An established result, Bruscoli (2002), is that, for an embedding of processes in a fragment
of CCS, Milner (1989), as formulae in BV, linear implication is strictly finer than (completed)
trace inclusion. In other work, Horne et al. (2017), a tighter result is established, showing linear
implication is strictly finer than pomset ideal inclusion — a classic notion of refinement for
truly concurrent processes, Gischer (1988). Pomset ideals are defined with respect to certain
homomorphisms over pomsets, which have finer non-interleaving properties than traces. Indeed
BV was motivated by pomset logic, Retoré (1997), so formal links with pomsets should be no
surprise.

This paper sharpens previous work on processes as formulae in two directions: firstly, we ex-
tend our embedding to more expressive process languages including the π-calculus, Milner et al.
(1992); and, secondly, we establish the soundness of linear implication with respect to finer pro-
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cess preorders, including weak simulation. A conference paper, Horne et al. (2016), introduced a
first-order extension of MAV, called MAV1, featuring additive operators modelling choice, first-
order universal and existential quantifiers and a novel de Morgan dual pair of nominal quantifiers
called “new” and “wen”, denoted И and Э respectively.† For the sake of clarity, here we restrict
ourselves to the system BV1, excluding the additive operators that model choice in MAV1. This
work clarifies that, for embeddings of processes as formulae, linear implication in BV1 is sound
with respect to a fine notion of weak simulation called complete weak open simulation, in both
the π-calculus and the πI-calculus, Sangiorgi (1996a). Some general proof normalisation tech-
niques for extracting labelled transitions from proofs of certain forms are developed, that should
be applicable to many process calculi beyond the fragment of the π-calculus explicitly considered
in this paper.

Summary. Section 2 recalls established results for BV and lays out a roadmap for embeddings
of processes as formulae. Section 3 introduces proof system BV1 and an embedding of π-calculus
processes as formulae in BV1, along with statement of the main soundness result. Section 4,
contains technical proof normalisation results, generalising established results on “left proofs”
developed in related work. Section 5 combines lemmas regarding proof normalisation to prove
the soundness of linear implication with respect to complete weak open simulation. Section 6
highlights that techniques extended to the private inputs in the πI-calculus.

2. A Roadmap for the Processes-as-Formulae Paradigm

This section touches on the history behind the search for a logical embedding of processes. We
explain in what sense the calculus of structures addresses limitations of previous embeddings.
The aim of this discussion is to clarify where the current paper sits in a roadmap towards a
purely logical explanation of processes in the processes-as-formulae paradigm.

2.1. Distinct logical approaches to the semantics of processes.

Since the early days of linear logic, Girard (1987), applications of linear logic to modelling
interactive concurrent systems have been suggested. Approaches can be classified along two
major thrusts: proofs-as-process, and processes-as-formulae.

The proofs-as-processes paradigm Abramsky (1994); Bellin and Scott (1994) is inspired by the
famous Curry-Howard correspondence between intuitionistic logic and typed λ-calculi. Recent
work in the proofs-as-processes approach links formulae in linear logic with session types and
proofs of the formulae with processes that inhabit the given session type, Caires et al. (2016). We
do not follow the proofs-as-processes paradigm in this work.

In the approach we follow, the processes-as-formulae paradigm, processes are directly em-
bedded as formulae. An early attempt at an embedding of process as formulae, Miller (1993),
embeds the π-calculus as a theory in linear logic. In Miller’s encoding, input and output prefixes
are encoded via higher-order predicates, whose behaviour is defined via a theory in a higher-
order fragment of linear logic. In that work, the semantics of a process is defined, in terms of

† Details of cut elimination for MAV1 appear in a supporting technical report, Horne et al. (2018).
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the set of formulae provable in linear logic. Miller’s approach falls short of a full processes-as-
formulae embedding in the sense that input and output prefixes are not logical in nature. Also,
name restriction is not handled.

Another related, but distinct, line of work is a deep embedding approach where process ex-
pressions are encoded as terms in a suitably expressive logic, and both the operational semantics
and the process preorder or equivalence are encoded as (co-)inductive definitions McDowell
et al. (2003); Tiu and Miller (2010); Bengtson and Parrow (2009). A limitation of such deep
embeddings is implication in the logic does not directly define a preorder on processes.

2.2. A purely logical approach to prefixes.

The calculus of structures, Guglielmi (2007), revives research into the processes-as-formulae
paradigm. The calculus of structures is sufficiently expressive to define extensions of linear logic
with a non-commutative operator. As observed previously, Bruscoli (2002), for a fragment of
CCS, a suitable non-commutative operator eliminates the need to use higher-order predicates to
encode prefixes, as in the work, Miller (1993), discussed in the sub-section immediately above.

By defining a suitable logical system in the calculus of structures, we can directly map pro-
cesses to formulae in that logical system. Furthermore, unlike approaches previously discussed,
embedding of processes can be compared directly by using linear implication. The existence of
a purely logical preorder over processes gives rise to natural questions:

— Where is linear implication situated in the spectrum of process preorders?
— Can expressive process calculi be embedded in systems defined in the calculus of structures?
— Given that there is a strong objective justification for this process preorder (cut elimination);

are there also compelling applications for this process preorder in computer science?

The above questions set a broad agenda, to which the current paper contributes.
Figure 1 elaborates on the first question above. In Fig. 1, process preorders are divided along

two axes: the linear-time/branching-time axis, van Glabbeek (1990), and the interleaving/causality-
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Fig. 1. A roadmap situating implication in the spectrum of process preorders. Arrows indicate strict
soundness results. Linear implication distinguishes the most processes; while trace inclusion
identifies the most processes. Weak simulation and pomset ideals are unrelated to each other.
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preserving axis, Sassone et al. (1996). At the top of Fig. 1 is trace inclusion, defined by subset
inclusion over the set of all traces of a process. Trace inclusion is widely considered to be the
coarsest preorder over processes; hence as a minimal requirement all other preorders should be
sound with respect to trace inclusion, as indicated by the arrows in the figure. Along the linear-
time/branching-time axis, trace inclusion can be refined by various weak simulations which have
finer properties regarding the distributivity of non-deterministic choice, indicated by ⊕ in this
work. In the other direction, along the interleaving/causality-preserving axis, models such as
pomset ideals, Gischer (1988), retain the causal relationships between events. Non-interleaving
semantics ensure, for example, that, unlike trace inclusion and weak simulation, a / a and a ` a
do not coincide — a property referred to as autoconcurrency, van Glabbeek and Goltz (2001).

We observe that linear implication has both branching-time and causality-preserving proper-
ties; hence is situated at the bottom of Fig. 1. This work formally establishes the soundness of
linear implication with respect weak simulation, for a fragment the π-calculus.

2.3. Recalling established results for a purely logical embedding of processes

The first paper linking the calculus of structures with process calculi, Bruscoli (2002), embeds
a fragment of CCS processes into the system BV in the calculus of structures. Formula P is
provable in BV, written ` P, whenever we have a derivation of zero or more rule instances with
conclusion P and premiss ◦ according the rules of BV in Fig. 2.

BCCS is a fragment of CCS, consisting of only parallel composition and input/output prefixes.
The embedding of BCCS processes as formulae in BV is defined such that:

~1�B = ◦
�

p | q
�

B =
�

p
�

B ` �q�B �
a.p
�

B = a /
�

p
�

B
�
a.p
�

B = a /
�

p
�

B

A completed trace is defined by grammar T F ◦ | a / T | a / T . A process p0 has completed
trace a1 / a2 . . . / an whenever there exists a series of zero or more labelled transitions such that
p0

a1 I p1, and pi
ai+1I pi+1 (skipping internal transitions due to interactions) such that pn has no

further actions to execute, hence is completed. The following theorem is established connecting
completed traces with BCCS processes by using provability.

Theorem 2.1 (Bruscoli 2002). If T is a completed trace and p is a process in BCCS, then
` T (

�
p
�

B in BV if and only if p has completed trace T .

We use negation-normal-forms where linear implication and linear negation are not primitive
formulae, but instead are defined as functions that push negations to the atoms. Linear implica-

P F ◦ (unit)
α (atom)
α (co-atom)
P ` P (par)
P � P (times)
P / P (seq)

C{ ◦ }

C{ α ` α } (atomic interaction)
C{ P � (Q ` R) }
C{ (P � Q) ` R }

(switch)

C{ (P ` R) / (Q ` S ) }
C{ (P / Q) ` (R / S ) }

(sequence)

(P,`, ◦) and (P,�, ◦) are commutative monoids, and (P, /, ◦) is a monoid.

Fig. 2. The syntax, inference rules and structural congruence for BV.
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tion, P ( Q, is defined as P ` Q, where P is the linear negation of P, defined by the following
function over formulae.

α = α P � Q = P ` Q P ` Q = P � Q ◦ = ◦ P / Q = P / Q

Linear negation defines de Morgan dualities. As in linear logic, the multiplicatives � and ` are
de Morgan dual. Seq and the unit are self-dual, in the sense that their de Morgan dual operators
are themselves. Cut elimination in BV can be formulated as follows.

Theorem 2.2 (Guglielmi 2007). If ` C
{

P � P
}

then ` C{ ◦ } in system BV.

Combining Theorem 2.2 and Theorem 2.1, we can establish the soundness of linear implica-
tion with respect to completed trace inclusion.

Corollary 2.3 (soundness). For BCCS processes p and q, if `
�

p
�

B (
�
q
�

B then, for all com-
pleted traces T , if p has completed trace T then q has completed trace T .

Proof. Assume `
�

p
�

B (
�
q
�

B holds and p has completed trace T . By Theorem 2.1, we have
that ` T (

�
p
�

B holds. Hence by Theorem 2.2, ` T (
�
q
�

B holds. Thereby, by Theorem 2.1,
process q has completed trace T , as required.

The original paper on BV and BCCS, Bruscoli (2002), did not explicitly state the above corollary.
That paper concerned only executions rather than the more subtle semantic issues surrounding
process preorders used for refining processes, as explored in this work. As observed in Fig. 1,
completeness of linear implication with respect to completed trace inclusion is impossible. The
fact that linear implication does not exhibit autoconcurrency (a ` a “ a / a) is the simplest
counterexample. Having no autoconcurrency is important for true-concurrency. For example,
interleaving semantics, such as trace inclusion, exhibit autoconcurrency and therefore do not re-
spect real-time. Hence linear implication is strictly finer than completed trace inclusion. Related
work, Horne et al. (2017), tightens soundness by showing linear implication is strictly finer than
pomset ideals, Gischer (1988), which are finer than completed traces. That work also makes
explicit how timing properties are respected by linear implication.

The rest of this paper is dedicated to both: extending the discussion to the π-calculus, which
demands a treatment of name binding; and also, tightening Fig. 1 by formally establishing the
soundness of linear implication with respect to notions of weak simulation.

3. The First-order System BV1 and Embeddings of Mobile Processes

We recall a first-order extension of BV, called BV1, Horne et al. (2016), featuring a novel de
Morgan dual pair of nominal quantifiers “new” and “wen” introduced to model private names as
featured in the π-calculus. This section summarises key results required to recommend BV1 as a
logical system, and provides an embedding of a fragment of the π-calculus in BV1. This enables
us to state the main result of the paper — that linear implication is sound with respect to weak
simulation — although key lemmas are postponed until later sections.
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3.1. The syntax, inference rules and structural rules of BV1

The proof system BV1 extends BV with the first-order quantifiers for all, new, wen and exists.
The syntax and structural congruence is presented in Fig. 3. The rules of the system, expressed
as inference rules in Fig 4, can be applied in any context, where a context is a formula with a
hole of the form C{ · } F { · } | C{ · } � P | P � C{ · } |

Q

x.C{ · }, where � ∈ {/,`,�} and

Q

∈ {∃,∀,И,Э} and { · } is a hole into which any formula can be plugged. We assume that
quantifiers bind tighter than binary operators, e.g. Иx.P ` Q denotes (Иx.P) ` Q.

structural congruence:

Иx.Иy.P ≡ Иy.Иx.P Эx.Эy.P ≡ Эy.Эx.P (equivariance)

(P,`, ◦) and (P,�, ◦) are commutative monoids, and (P, /, ◦) is a monoid.

linear negation:

α = α P � Q = P ` Q P ` Q = P � Q ◦ = ◦ P / Q = P / Q

∀x.P = ∃x.P ∃x.P = ∀x.P Иx.P = Эx.P Эx.P = Иx.P

linear implication: P( Q = P ` Q

P F ◦ (unit)
α (atom)
α (co-atom)
∀x.P (for all)
∃x.P (exists)
Иx.P (new)
Эx.P (wen)
P ` P (par)
P � P (times)
P / P (seq)

Fig. 3. The syntax of BV1, structural congruence (including α-conversion for quantifiers), and
definitions of linear negation and linear implication.

The structural congruence extends the structural congruence for BV with α-conversion for all
quantifiers and equivariance for nominal quantifiers. Equivariance allows both nested new and
wen operators to be exchanged. Note, for exists and for all, equivariance is a derived property;
but equivariance must be explicitly induced in the structural congruence for nominal quantifiers.

Freshness is defined such that x is fresh for a formula P, written x # P, if and only if x is not a
member of the set of free variables of P, such that all quantifiers bind variables in their scope. A
substitution is a mapping from variables to terms, which is an identity except for a finitely many
variables. In this work, since we consider only name-passing calculi, we assume that the only
terms in our logic are variables, but it is straightforward to extend the logic to allow function
symbols as well. As standard, we assume that application of a substitution avoids capture of
free variables. Application of substitutions is written in a postfix notation, e.g., P{v/x} denotes an
application of substitution {v/x} to P.

Considerable creativity is permitted when defining the predicates and terms that form the
atoms of the calculus. In work on session types atoms range over tuples containing any datatype
equipped with a subtyping preorder, Ciobanu and Horne (2015). In work on attack trees, atoms
are infinitely divisible as actions are refined, Horne et al. (2017). For the π-calculus embeddings
in this paper, atoms are simply pairs of first order variables representing a channel and value
passed on the given channel. Value passing extensions of the π-calculus can be embedded by
extending with terms constructed from function symbols, constants and first-order variables.

Linear negation, defined by a function over formulae in Fig. 3, extends the de Morgan dualities
for BV to quantifiers. The first-order quantifiers ∃ and ∀ are de Morgan dual, as are the nominal
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C{ ∀x.(P ` R) }
C{ ∀x.P ` R }

x # R (extrude1)
C{ ◦ }

C{ ∀x.◦ }
(tidy1)

C{ ∀x.P / ∀x.S }
C{ ∀x.(P / S ) }

(medial1)
C{ P{v/x} }
C{ ∃x.P }

(select1)

C{ Иx.(P ` Q) }
C{ Иx.P ` Эx.Q }

(close)
C{ Иx.(P ` R) }
C{ Иx.P ` R }

x # R (extrude new)
C{ ◦ }

C{ Иx.◦ }
(tidy name)

C{ Иx.P }
C{ Эx.P }

(fresh)
C{ Эy.Иx.P }
C{ Иx.Эy.P }

(new wen)
C{ Иy.∀x.P }
C{ ∀x.Иy.P }

(all new)
C{ Эy.∀x.P }
C{ ∀x.Эy.P }

(all wen)

C{ Иx.P / Иx.S }
C{ Иx.(P / S ) }

(medial new)
C{ Эx.(P ` S ) }
C{ Эx.P ` Эx.S }

(suspend)
C{ Эx.(P / S ) }
C{ Эx.P / Эx.S }

(suspend)

C{ Эx.(P ` R) }
C{ Эx.P ` R }

x # R (wen)
C{ Эx.(P / R) }
C{ Эx.P / R }

x # R (wen)
C{ Эx.(R / Q) }
C{ R / Эx.Q }

x # R (wen)

Fig. 4. Inference rules, extending the three rules of BV, in Fig. 2, to formulae in system BV1.

quantifiers И and Э. Linear implication is a derived connective, and conservatively extends linear
implication from the system BV to BV1.

The inference rules of BV1 are given in Fig. 4. A derivation is a sequence of zero or more
inference rules, where the structural congruence can be applied at any point. We are particularly

interested in proofs. Note we overload notation where
Q
P means a derivation of any length with

conclusion P and premiss Q, as opposed to the less compact notation for derivations
P

Q
employed

in the literature. If it is important that a particular rule instance is applied, we make this clear in
the surrounding text.

Definition 3.1. A proof in BV1 is a derivation of the form
◦

P. When such a derivation exists, we
say that P is provable, and write ` P.

Cut elimination holds for BV1 as a consequence of cut-elimination for MAV1, Horne et al. (2016).
A full proof appears in a companion paper, Horne et al. (2018).

Theorem 3.2 (cut elimination). If ` C
{

P � P
}

then ` C{ ◦ } in system BV1.

Cut elimination is, of course, the corner stone of a proof system. Consistency for BV1 can be
established immediately in the sense that for any provable formula with at least one atom, the
linear negation is not provable. Of particular relevance to this work is the following corollary.

Corollary 3.3. Linear implication defines a preorder, a reflexive and transitive relation, pre-
served by all contexts.
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3.2. Embedding π-calculus processes as formulae in BV1

We assume the reader is familiar with the syntax and operational semantics of the π-calculus,
Milner et al. (1992). We consider a fragment of the π-calculus featuring parallel composition,
input and output actions and private name binders. A (late) labelled transition system for this
fragment of the π-calculus is recalled in Fig. 5. A small but notable syntactic departure from the
literature is the use of action x[z] on labels to represent a bound output. This syntax is chosen to
disambiguate semantically distinct concepts. In this paper we would like to discuss both the input
of the π-calculus, and, later in this paper, the private input of the πI-calculus Sangiorgi (1996a).
Traditionally, these inputs use the same syntax but have distinct semantics. To disambiguate
which input we discuss we use x(z) for the π-calculus input, which can receive both private and
public names, and x[z] for πI-calculus input, which can only receive a name if it is guaranteed
to be private. The natural dual to private input is the output of a fresh private name, hence we
also use syntax x[z] for private outputs in the π-calculus. In our embeddings, the intuitive duality
between x[z] and x[z] is put on a precise foundation by the use of the dual operators И and Э.

p F 1 (success)
νx.p (nu)
x(y).p (input)
xy.p (output)
p | p (par)

πF τ | x[z] | xz | x(z) (actions)

x(y).p x(y)
I p xy.p xy

I p

p xz
I q

νz.p x[z]
I q

x , z

p π
I q

νx.p π
I νx.q

x < n(π)
p π

I r

p | q π
I r | q

if π = x[z] or π = x(z), z # q

p x[z]
I p′ q x(z)

I q′

p | q τ
I νz.(p′ | q′)

p xy
I p′ q x(z)

I q′

p | q τ
I p′ | q′{y/z}

Fig. 5. Syntax and labelled transitions for the π-calculus (plus symmetric rules for p | q). Function
n(.) is such that n(x(y)) = n(x

[
y
]
) = n(xy) = {x, y} and n(τ) = ∅. Freshness predicate x # p is such

that x is fresh for p, where z(x).p and νx.p bind x in p.

Notice the constant 1 is used to indicate the successfully terminated process. We use the sym-
bol 1, rather than 0 frequently used in the literature, so as to reserve 0 for representing deadlock.
Note the use of 1 is standard for semantics which are sensitive to the difference between a process
stopping because of deadlock and stopping because it has successfully fulfilled all its obligations
and has not further pending actions to execute, e.g. Bernardi and Hennessy (2013).

In subsequent definitions, we require the following inductively defined predicate X, which
holds whenever a process has successfully terminated.

Definition 3.4. 1X holds, and, if pX and qX, then (p | q)X holds and (νx.p)X holds.

This work will prove linear implication is sound with respect to a notion of weak simula-
tion. For weak simulations, if a process can perform a transition, then the simulating process
can perform zero or more τ-transitions before matching the transition. In order to define weak
simulation, we recall the following standard definitions.

Definition 3.5. p1 I pn whenever p1 = pn or there exist processes p2, . . . , pn−1 such that
pi

τ I pi+1 for 1 ≤ i < n. If p I q and q π I r and r I s then p π
I s.
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For a sharper result, we consider complete weak open simulation. For the open part of the
definition, we require the following definition of a history, where a history is a neat representation
of name distinctions in open simulation, Sangiorgi (1996b), employed in related work on deep
embeddings of open bisimulation using ∇ quantifiers, Tiu and Miller (2010); Ahn et al. (2017).

Definition 3.6. A history is defined according to the grammar hF ε | h · xo | h · xi. We denote
with n(h) the set of names (without the superscript o and i) appearing in h. Substitution σ respects
history h whenever, for all h′ and h′′ such that h = h′ · xo · h′′, we have xσ = x and x < n(h′σ).

Intuitively, the label i on a name x indicates that x is a name associated with an input action,
and the label o indicates it is a name associated with an output action.

For complete simulations the termination potential is preserved. In this weak setting, preserv-
ing termination potential means, if a process has reached a successfully terminated state, as in
Def. 3.4, then the simulating process can also perform zero or more internal τ-transitions to reach
a successfully terminated state. This leads us to the following version of weak simulation.

Definition 3.7. A complete weak open simulation is a relation between processes, indexed by a
history, such that, whenever p Rh q holds, all of the following hold:

— If substitution σ respects h, then pσ Rhσ qσ holds.
— If pX then there exists q′ such that q I q′ and q′X.
— If p xzI p′, there exists q′ such that q xz

I q′ and p′ Rh q′.
— If p x[z]I p′, where variable z is fresh for p, q and h, then there exists process q′ such that

q x[z]
I q′ and p′ Rh·zo

q′.
— If p x(z)

I p′, where variable z is fresh for p, q and h, then there exists process q′ such that
q x(z)

I q′ and p′ Rh·zi
q′.

— If p τ I p′, then p′ Rh q.

p is simulated by q, written p � q, whenever there exists a complete weak open simulation R
such that p Rxi

0·...·x
i
n q where fv(p) ∪ fv(q) ⊆ {x0, . . . , xn}, where fv(p) denotes the set of free

variables occurring in p.

We embed a fragment of the π-calculus in BV1. We assume an uninterpreted binary predicate
act which we use to encode action prefixes representing a channel and a message transmitted on
the channel. However, for a more compact presentation, we shall simply write xy, where x and y
are names, to denote act(x, y).

~1�π = ◦
�

p | q
�
π =
�

p
�
π
` �q�π �

νx.p
�
π = Иx.

�
p
�
π�

x(z).p
�
π = ∃z.

(
xz /
�

p
�
π

) �
xz.p
�
π = xz /

�
p
�
π

The main result of this paper is linear implication is sound with respect to the above notion of
weak simulation, and consequently all coarser preorders, including completed trace inclusion.

Theorem 3.8. For π-calculus processes p and q, if `
�

p
�
π (
�
q
�
π in BV1, then p � q.

The proof of the above theorem relies on Theorem 3.2 and results developed in the rest of this
paper. We emphasise that, as for BV and BCCS, linear implication in BV1 is strictly finer than
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complete weak open simulation, since Def. 3.7 is still an interleaving preorder and, unlike inter-
leaving preorders, linear implication preserves causality (c.f. no autoconcurrency).

The following corollary of the above theorem emphasises a property of provable processes.

Corollary 3.9. If `
�

p
�
π in BV1, then p can terminate successfully.

Proof. Assuming `
�

p
�
π, we have ` ~1�π (

�
p
�
π holds. By Theorem 3.8, we have 1 � p,

hence since, 1X, it must be the case that we have transitions p I p′ such that p′X.

The above property is sometimes referred to as a multiparty compatibility property, Deniélou and
Yoshida (2013), since it indicates whether a collection of endpoints can be scheduled such that,
collectively, they implement a protocol without deadlocking. This observation has been exploited
to provide a purely logical explanation of multiparty compatibility in session types, based on
provability, Ciobanu and Horne (2015). Multiparty compatibility tells us nothing about linear
implication as a notion of process refinement, hence is a much weaker property than Theorem 3.8.
The above corollary does however emphasises an advantage of respecting “complete” variants
of weak simulations.

Further to the above benefit of complete simulations, observe that xx and xx | yy are unrelated
according to complete weak open simulation. In contrast, if instead consider only weak open
simulation, dropping the complete condition regarding termination, then xx would be simulated
by xx | yy (a form of weakening property). Thus “complete” simulations, just as implication in
linear logic, are resource sensitive — resources are preserved by refinement.

3.3. Explanation for employing de Morgan dual nominal quantifiers

We illustrate why neither universal quantification nor an established self-dual nominal quanti-
fier, Pitts (2003); Miller and Tiu (2005); Gacek et al. (2011), are capable of soundly modelling
name restriction in a processes-as-formulae embedding. In the following, observe νx.(ax | bx)
outputs a fresh name twice, once on channel a and once on channel b; but cannot output two
distinct names in any execution. In contrast, observe νx.ax | νx.bx outputs two distinct fresh
names before terminating, but cannot output the same name twice in any execution. Processes
νx.(ax | bx) and νx.ax | νx.bx must not be related by weak simulation.

Suppose that universal quantifiers were unsoundly used to encode private names. In this sce-
nario, processes νx.(ax | bx) and νx.ax | νx.bx are (wrongly) encoded as formulae ∀x.

(
ax ` bx

)
and ∀x.ax ` ∀x.bx respectively. The implication ∀x.ax ` ∀x.bx ( ∀x.

(
ax ` bx

)
is provable, but

the respective processes are unrelated by simulation. To see why the processes are unrelated by
simulation, observe both processes can output a fresh names on channel a as follows.

νx.(ax | bx) a[x]I 1 | bx and νx.ax | νx.bx a[x]I 1 | νx.bx

The above transitions lead to pair of processes 1 | bx and 1 | νx.bx, where the former can only

perform a free output transition 1 | bx bxI 1 | 1, and the latter can only perform a bound output

1 | νx.bx b[x]I 1 | 1. Hence neither process can simulate the other. Hence, under an encoding of
private names using universal quantifiers, implication would not be sound with respect to weak
simulation, and hence Theorem 3.8 would not hold under that encoding.

Additionally, an embedding of private names must also avoid the following diagonalisation
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property: ∀x.∀y.P(x, y) ( ∀z.P(z, z). The self-dual nominal quantifiers of either Gabbay-Pitts
or Miller-Tiu, as investigated in the calculus of structures, Roversi (2016), do successfully avoid
the above diagonalisation property. However, encoding private names using any of these self-dual
nominal quantifiers, say ∇, leads to the following problem. Suppose processes νx.(ax | bx) and
νx.ax | νx.bx are encoded by formulae ∇x.(ax ` bx) and ∇x.ax `∇x.bx respectively. In this case,
linear implication ∇x.(ax ` bx)( ∇x.ax ` ∇x.bx is provable.‡ This implication is also unsound
with respect to simulation, since, as explained above, the processes are unrelated by simulation.

Our new quantifier И, distinct from the Gabbay-Pitts operator, addresses the above limitations
of universal quantification and established self-dual nominal quantifiers. In addition to avoiding
diagonalisation, our И quantifier does not distribute over parallel composition in either direction.
The formulae Иx.(ax ` bx) and Иx.ax ` Иx.bx are, correctly, unrelated by linear implication.

3.4. Translating from labelled transitions to proofs (but not the converse)

Theorem 3.8 requires the following lemmas. The first follows by a trivial induction. The second
translates any labelled transition into a proof and relies on cut elimination (Theorem 3.2).

Lemma 3.10.
�

p
�
π{

y/x} ≡
�

p{y/x}
�
π.

Lemma 3.11. The following statements hold:

— If p x[z]I q then `
�
νz.xz.q

�
π (
�

p
�
π.

— If p xzI q then `
�

xz.q
�
π (
�

p
�
π.

— If p x(z)
I q then `

�
x(z).q

�
π (
�

p
�
π.

— If p τ I q then `
�
q
�
π (
�

p
�
π.

Proof. The proof follows by structural induction on the derivation of a labelled transition.
Consider the base cases, where a label transition holds by an axiom of the labelled transition

system. For axiom x(z).p x(z)
I p, observe `

�
x(z).p

�
π (
�

x(z).p
�
π holds by reflexivity of linear

implication (Corollary 3.3). Similarly, for axiom xz.p xzI p, we have `
�

xz.p
�
π (
�

xz.p
�
π.

Consider the case of the open rule:

p xzI q

νz.p x[z]I q
x , z

By assume as the induction hypothesis that `
�

xz.q
�
π (
�

p
�
π holds, such that x , z. Using this

assumption, we can establish `
�

x[z] .q
�
π (
�
νz.p
�
π holds by the following proof, as required.

◦

Иz.◦
by tidy

Иz.
((

xz /
�
q
�
π

)
` �p�π) by the induction hypothesis

Эz.
(
xz /
�
q
�
π

)
` Иz.

�
p
�
π

by close

‡ An extensive discussion on this implication appears in a companion paper, Horne et al. (2018).
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Consider the case of the interaction rule involving a private name:

p x(z)
I p′ q x[z]I q′

p | q τ I νz.(p′ | q′)

Assume as the induction hypotheses, `
�

x(z).p′
�
π (

�
p
�
π and `

�
x[z] .q′

�
π (

�
q
�
π hold. Now

observe `
(�

x(z).p′
�
π (
�

p
�
π

)
�

(�
x[z] .q′

�
π (
�
q
�
π

)
(
�
νz.(p′ | q′)

�
π (
�

p | q
�
π holds, by the

following proof.
◦

Иz.◦
tidy

Иz.
(
(xz ` xz) /

(�
p′
�
π
` �q′�π `

(�
p′
�
π

�
�
q′
�
π

))) reflexivity

Иz.
((

xz /
�

p′
�
π

) ` (
xz /
�
q′
�
π

) `
(�

p′
�
π

�
�
q′
�
π

)) sequence

Иz.
(
∃z.

(
xz /
�

p′
�
π

) ` (
xz /
�
q′
�
π

) `
(�

p′
�
π

�
�
q′
�
π

)) select1

∃z.
(
xz /
�

p′
�
π

) ` Иz.
((

xz /
�
q′
�
π

) `
(�

p′
�
π

�
�
q′
�
π

)) extrude new

∃z.
(
xz /
�

p′
�
π

) ` Иz.
(
xz /
�
q′
�
π

) ` Эz.
(�

p′
�
π

�
�
q′
�
π

) close

((�
p
�
π
` �p�π) � ∃z.

(
xz /
�

p′
�
π

)) `
((�

q
�
π
` �q�π) � Иz.

(
xz /
�
q′
�
π

)) ` Эz.
(�

p′
�
π

�
�
q′
�
π

) reflexivity

(
∃z.

(
xz /
�

p′
�
π

)
�
�

p
�
π

)
`

(
Иz.

(
xz /
�
q′
�
π

)
�
�
q
�
π

)
`

(
Эz.

(�
p′
�
π

�
�
q′
�
π

))
` �p�π ` �q�π switch

Hence by Theorem 3.2, `
�
νz.(p′ | q′)

�
π (
�

p | q
�
π, as required.

Consider the interaction rule of the following form, involving a free output:

p x(z)
I p′ q xy

I q′

p | q τ I p′{y/z} | q′

As the induction hypothesis assume that `
�

x(z).p′
�
π (

�
p
�
π and `

�
xy.q′
�
π (

�
q
�
π hold.

Also observe `
(�

x(z).p′
�
π (
�

p
�
π

)
�

(�
xy.q′
�
π (
�
q
�
π

)
(
�

p′{y/z} | q′
�
π (

�
p | q
�
π holds, as

established by the following proof and Lemma 3.10.
◦

(xy ` xy) /
((�

q′
�
π
` �q′�π) �

(�
p′
�
π{

y/z} `
�

p′
�
π{

y/z}
)) reflexivity

(xy ` xy) /
(�

q′
�
π
` �p′�π{y/z} ` (�

p′
�
π{

y/z} �
�
q′
�
π

)) switch

(
xy /
�

p′
�
π{

y/z}
) ` (

xy /
�
q′
�
π

) `
(�

p′
�
π{

y/z} �
�
q′
�
π

) sequence

∃z.
(
xz /
�

p′
�
π

) ` (
xy /
�
q′
�
π

) `
(�

p′
�
π{

y/z} �
�
q′
�
π

) select1

((�
p
�
π
` �p�π) � ∃z.

(
xz /
�

p′
�
π

)) ` ((�
q
�
π
` �q�π) �

(
xy /
�
q′
�
π

)) `
(�

p′
�
π{

y/z} �
�
q′
�
π

) reflexivity

(
∃z.

(
xz /
�

p′
�
π

)
�
�

p
�
π

)
`

((
xy /
�
q′
�
π

)
�
�
q
�
π

)
`

(�
p′
�
π{

y/z} �
�
q′
�
π

)
` �p�π ` �q�π switch

Hence, by Theorem 3.2, `
�

p′{y/z} | q′
�
π (
�

p | q
�
π holds, as required.

Consider the case of the contextual rule for new names instantiated for private output:

p x[z]I q

νy.p x[z]I νy.q
x , y and z , y

As the induction hypothesis, assume `
�

x[z].q
�
π (

�
p
�
π holds, where y is such that x , y and
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z , y. Using these assumptions, we can directly establish `
�

x[z].νy.q
�
π (
�
νy.p
�
π holds, by the

following proof. Note the use of the equivariance structural rule.
◦

Иy.◦
tidy

Иy.
(
Эz.

(
xz /
�
q
�
π

)
` �p�π) induction hypothesis

Эy.Эz.
(
xz /
�
q
�
π

)
` Иy.

�
p
�
π

close

Эz.Эy.
(
xz /
�
q
�
π

)
` Иy.

�
p
�
π

equivariance

Эz.
(
xz / Эy.

�
q
�
π

)
` Иy.

�
p
�
π

wen, since x , y and z , y

Consider the contextual rule for parallel composition, instantiated for private output:

p x[z]I q

p | r x[z]I q | r
z # r

As the induction hypothesis assume `
�

x[z].q
�
π (

�
p
�
π holds, where z # r. By these assump-

tions, `
�

x[z].(q | r)
�
π (
�

p | r
�
π holds, as established by the following proof.

◦

Эz.
(
xz /
�
q
�
π

)
` �p�π induction hypothesis

Эz.
(
xz /

(�
q
�
π

�
(
~r�π ` ~r�π

)))
` �p�π reflexivity

Эz.
(
xz /

((�
q
�
π

� ~r�π
)
` ~r�π

))
` �p�π switch

Эz.
((

xz /
(�

q
�
π

� ~r�π
))

` ~r�π
)
` �p�π sequence

Эz.
(
xz /

(�
q
�
π

� ~r�π
))

` �p�π ` ~r�π
wen, since z # r

Remaining cases for the contextual rules instantiated with free output, τ and input are similar
to the previous two cases. Hence, by induction on the structure of the derivation of a labelled
transition, a corresponding provable formula can be constructed as required.

Remark 3.12. Interestingly, the equivariance structural rule (Fig. 3) is a design decision in the
sense that cut elimination is still provable for BV1 without equivariance. However, equivariance
is a requirement for soundly embedding the labelled transitions of the π-calculus (Lemma 3.11).
Consider labelled transition νy.νx.zx.wy z[x]I νy.wy. The implication corresponding to the la-
belled transition: `

�
νx.zx.νy.wy

�
π (
�
νy.νx.zx.wy

�
π is provable only if we have equivariance.

The converse of each statement in Lemma 3.11 does not necessarily hold. Hence, although
we can embed labelled transitions as proofs, the same techniques cannot be applied to extract la-
belled transitions from proofs. Additional techniques developed in the next section are required.

4. Left Proofs and Normalisation Properties Required for Establishing the Main Result

This section provides technical devices required to establish the soundness of linear implication
with respect to weak simulation (Theorem 3.8). These techniques, which are forms of proof
normalisation properties, permit greater control of where in a proof the interaction of atoms,
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instantiation of existential quantifiers, and extrusion of quantifiers each occur. These lemmas are
critical for extracting labelled transitions from proofs in subsequent sections.

4.1. Generalising established observations on left proofs in BV

Before tackling BV1, we begin by generalising some established result for BV, Bruscoli (2002).
The proof of Proposition 2.1 concerning BCCS employs a normalisation result transforming
certain proofs in BV to “left proofs”. In BV, a left proof is such that atomic interaction can
only be applied inside left contexts, where the hole appears to the left of binary connectives,
as follows: L{ · } F { · } | L{ · } / P | L{ · } ` P | L{ · } � P. For example, the formula
(a / (b ` c)) `

((
a ` b

)
/ c

)
has a left proof where the atomic interaction rule must apply first to a

before b, then finally c. The following established result is restricted to formulae in BV in which
times � never appears.

Proposition 4.1 (Bruscoli 2002). If formula P contains no times operator and ` P in BV, then

there exists Q such that there is a derivation
Q
P using the sequence rule only and Q is provable

using only the atomic interaction rule applied in left contexts.

The following example shows there are formulae for which there is no left proof.

`
(((

a / b
)

�
(
d / e

))
/
(
c � f

))
` (a / ((b / c) � (g ` g))) `

(
d /

(
(e / f ) �

(
h ` h

)))
The above formula has no left proof in BV, where interaction is restricted to left contexts. The
difficulty is that the atoms g and h must interact before associativity can be applied to allow the
sequence rule to be correctly applied, as follows.

◦(((
a / b

)
�

(
d / e

))
/
(
c � f

))
` (((a / b) ` (d / e)) / (c ` f ))

reflexivity

(((
a / b

)
�

(
d / e

))
/
(
c � f

))
` (a / b / c) ` (d / e / f )

sequence

(((
a / b

)
�

(
d / e

))
/
(
c � f

))
` (a / ((b / c) � (g ` g))) `

(
d /

(
(e / f ) �

(
h ` h

))) atomic interaction

Fortunately, although there exist formulae with no left proof, it is possible to generalise Propo-
sition 4.1 to formulae of the form P ( Q, where P and Q contain no times operator and switch
may be applied along with sequence.

Proposition 4.2 (generalisation of Prop. 4.1). For formulae P and Q in which no times operator
occurs. If ` P( Q in BV, then there exists a left proof of P( Q in BV.

Now observe that embeddings of BCCS processes do not use the times operator. Hence, by the
above observation, for any BCCS processes p and q, if `

�
p
�

B (
�
q
�

B then we can always
construct a left proof of the same formula. For example, ~b | c�B (

�
a.b.d | a.c.d

�
B

has the
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following left proof.

◦

d ` d
atomic interaction

(c ` c) /
(
d ` d

) atomic interaction((
b ` b

)
� (c ` c)

)
/
(
d ` d

) atomic interaction

(a ` a) /
((

b ` b
)

� (c ` c)
)
/
(
d ` d

) atomic interaction

(a ` a) /
(
b ` c `

(
b � c

))
/
(
d ` d

) switch(
b � c

)
`

(
a / b / d

)
` (a / c / d)

sequence

Furthermore, from a left proof, we know how to establish the soundness of linear implication
with respect to complete weak simulation suitably defined for BCCS. For example, from the
above proof, we can use a procedure to construct a complete weak simulation S, defined to be
the least relation containing the following pairs of processes:

(b | c) S (a.b.d | a.c.d) (1 | c) S (d | c.d) (b | 1) S (b.d | d) (1 | 1) S (d | d)

In the interest of space, we proceed immediately to the π-calculus, rather than explaining this
procedure on BCCS. The procedures for each calculus are similar, except the π-calculus requires
additional mechanisms for handling quantifiers.

4.2. Extending the concept of left proofs to BV1

Here we define left proofs in BV1, by adapting the definition of left proofs for BV such that
quantifiers are accommodated. The concept of a left context in BV1 is defined as follows.

Definition 4.3. A left context L{ · } is defined according to the following grammar:

L{ · }F { · } | L{ · } / P | L{ · } ` P | L{ · } � P | Иx.L{ · } | ∀x.L{ · }

The interaction fragment of BV1 consists of the rules atomic interaction, tidy1 and tidy name.
The cooling fragment consists of all other rules of BV1. A left derivation is a derivation where
rules of the interaction fragment are applied only in a left context. A left proof of formula P in
BV1 is a proof estalished using a left derivation.

We require a number of technical lemmas, to establish the key normalisation property, Proposi-
tion 4.11. Firstly, observe instances of atomic interaction can be pushed upwards in a proof until
they are in a left context. In order to achieve this in BV1, we should first permute all tidy rules
upwards, since they may obstruct an atomic interaction from being permuted upwards. To see
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how this obstruction can happen, consider the following proof.
◦(

ab ` ab
) atomic interaction(

ab ` ab
)
/ Иz.◦

tidy name

(
ab ` ab

)
/ Иz.(cz ` cz)

atomic interaction(
ab ` ab

)
/ Иz.(cz ` ∃y.cy)

select1(
ab ` ab

)
/ (Иz.cz ` ∃y.cy)

extrude new(
ab / Иz.cz

)
` (ab / ∃y.cy)

sequence

(
ab / Иz.cz

)
` ∃x.(ax / ∃y.cy)

select1

In the above proof, the tidy name rule followed by one of the atomic interaction rules can be
permuted upwards until they are in a left context. The last three lines of the above proof can
thereby be transformed to the following proof, where rules are only applied in left contexts.

◦

νz.◦ tidy name

Иz.(cz ` cz) atomic interaction(
ab ` ab

)
/ Иz.(cz ` cz)

atomic interaction

There is a critical subtlety: a restriction is, as in BV, rules of the interaction fragment do not
permute over all other rules. In particular, we should take care about where the times operator
appears in derivations. To see why, consider the following derivation involving tidy name, medial
new and the times operator.

C{ Иx.(P / Q) / Иx.(R / S ) }
C{ Иx.(P / Q / R / S ) } medial new

C{ Иx.(P / (Иy.◦ � (Q / R)) / S ) }
tidy name

The tidy name rule in the above derivation cannot be permuted above the medial new rule in BV1.
For formulae in BV1 without times, the following normalisation property holds.

Lemma 4.4. Assume P and R contain no times operator. If there is a derivation
R
P in BV1, then

there exists Q such that: there is a derivation
Q
P in the cooling fragment of BV1; and a derivation

R
Q in the interaction fragment of BV1.

In contrast to the above, notice times may appear in the formula in the following.

Lemma 4.5. If P is provable in the interaction fragment of BV1, then P has a left proof in BV1.

A key case for the above lemma, known already for BV, is the following derivation.

C{ ◦ }

C{ a ` a } atomic interaction

C
{

a `
(
a /

(
b ` b

)) } atomic interaction
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Observe, in the derivation above, the atoms b do not interact in a left context. To ensure atomic
interaction is always applied in a left context, the above derivation can be transformed to the
derivation below.

C{ ◦ }

C
{

b ` b
} atomic interaction

C
{

(a ` a) /
(
b ` b

) } atomic interaction

C
{

a `
(
a /

(
b ` b

)) } sequence

No further problematic cases are introduced by quantifiers.
As a technical device, we define a form of restricted context called a killing context, Chaudhuri

et al. (2011), consisting of a hole surrounded by quantifiers ∀ and И.

Definition 4.6 (killing context). Grammar K{ · } F { · } | ∀x.K{ · } | Иx.K{ · } defines
killing contexts.

Splitting, proven in a companion paper as the main technical lemma required for proving cut
elimination, Horne et al. (2018), is formulated as follows for BV1. Traditionally, in the sequent
calculus, any connective can be selected and a corresponding rule applied. Splitting normalises
proofs to generalise this feature of sequents to the calculus of structures.

Lemma 4.7 (splitting). The following statements hold.

— For any atom α, if ` α`Q, there exists killing contextK{ · } such that if x appears inK{ · }

then x # α, and there exists a derivation
K{ α }

Q .
— For any atom α, if ` α`Q, there exists killing contextK{ · } such that if x appears inK{ · }

then x # α, and there exists derivation
K{ α }

Q .
— If ` (P � Q) ` R, then there exist formulae V and W such that ` P ` V and ` Q ` W, and

killing context K{ · } such that
K{ V ` W }

R and if x appears in K{ · } then x # (P � Q).
— If ` (P / Q)`R, then there exist formulae V and W such that ` P`V and ` Q`W, and killing

context K{ · } such that
K{ V / W }

R and if x appears in K{ · } then x # (P / Q).
— If ` Иx.P` Q, then there exist formulae V and W where x # V and ` P`W and either V = W

or V = Эx.W, such that we have derivation
V
Q.

— If ` Эx.P` Q, then there exist formulae V and W where x # V and ` P`W and either V = W

or V = Иx.W, such that we have derivation
V
Q.

— If ` ∃x.P ` Q, then there exist formulae V and value v such that ` P{v/x} ` V , and killing

context K{ · } such that
K{ V }

Q and if y appears in K{ · } then y # (∃x.P).
— If ` ∀x.P ` Q then, for any term t, ` P

{t/x
} ` Q.

Although splitting was developed to establishing cut elimination, the technique has proven to
be useful for solving other problems. Essentially, splitting can be used to guide a proof that
proceeds by induction over the structure of formulae. Such structural induction is trivial in the
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sequent calculus, since rules in sequents can only are applied to the root connective of a formula
in a sequent. Hence, splitting can be seen as recovering part of the power of the sequent calculus
in the more expressive setting of the calculus of structures.

A derivation over contexts
C′{ · }

C{ · } means, for all formulae U,
C′{ U }
C{ U } , i.e., no rule is applied to

the formula inserted in the hole. The following lemma ensures rules of the interaction fragment
can be confined to parts of formulae of a certain form.

Lemma 4.8. Assume, for � ∈ {⊗, /,`}, we have derivation
K{ Q0 � Q1 }

S in the interaction frag-
ment. There exist context C{ · } and formulae S 0 and S 1, such that, in the interaction fragment,
Q0

S 0 , and
Q1

S 1 , and
K{ · }

C{ · } ; and also
C{ S 0 � S 1 }

S in the cooling fragment.

Assume
K

{ Q

x.Q
}

S in the interaction fragment, where

Q

∈ {∀,И,Э,∃}. There exist context

C{ · } and formula R such that both
K{ · }

C{ · } and
Q
R in the interaction fragment; and

C
{ Q

x.R
}

S in
the cooling fragment.

We also require the following technical lemmas, used to break down certain derivations.

Lemma 4.9. Assume
K{ · }

C{ · } using only the interaction fragment, andK{ · } is a killing context.

In this situation, there exists left contextL{ · } such that we can construct a left derivation
L{ · }

C{ · }

and, also, derivation
K{ · }

L{ · } using only the interaction fragment.

To understand the above lemma, consider context (a ` a) / { · } /
(
b ` b

)
. There is no way to

transform this context to { · }, by applying interaction rules only in left contexts. However, we

can first apply atomic interaction in a left context

{ · } /
(
b ` b

)
(a ` a) / { · } /

(
b ` b

)
, observing we obtain a

premiss forming another left context. Assuming a formula P with a left proof is plugged into the

context, we can construct a left proof

◦

b ` b
P /

(
b ` b

)
. Thereby interactions to the right of the hole in

the context are suspended to the end of the proof.
The following property is a simple distributivity property satisfied by left contexts.

Lemma 4.10.
L{ Q ` P }
Q `L{ P }, using the cooling fragment, for all left contexts L{ · }, such that for

all variables y appearing as binders in L{ · } we have y # Q.

Although we cannot construct a left proof for all formulae containing times, as discussed for
BV, we can handle a large class of formulae. The class of formulae we are concerned with is
those formulae of the form K{ P( Q }, where P and Q contain no times operator and K{ · } is
a killing context. Fortunately, this class includes all formulae required for comparing embeddings
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of processes using linear implication. By combining the above technical lemmas, we obtain the
following more general property transforming proofs into left proofs.

Proposition 4.11. Assume P and Q contain no times operator and K{ · } is a killing context. If
K{ P( Q } has a proof in BV1, then K{ P( Q } has a left proof in BV1.

Proof. The trick in this proof is, since P contains no par operator, we can proceed by induction
on the structure of P in ` P ` Q, applying splitting (Lemma 4.7) at each step. Also observe the
killing context can be trivially removed by repeatedly applying splitting.

Consider the base case where P = ◦, and ` ◦ ` Q. Since Q contains no times operator, by

Lemma 4.4, there exists R such that we have derivation in the cooling fragment
R
Q and a proof of

R in the interaction fragment. Since the proof of R is in the interaction fragment, by Lemma 4.5,
there is a left proof of R, and hence a left proof of ◦ ` Q.

In the base case for atoms, ` a ` Q where Q contains no times. By splitting (Lemma 4.7), for
some killing context K1{ · }, such that if y appears in K1{ · } then y # α, we have a derivation
K1{ α }

Q . Hence, by Lemma 4.4, for some C1{ · } we have
C1{ α }

Q in the cooling fragment and
K1{ α }

C1{ α } in the interaction fragment. By Lemma 4.9, there exists left context L1{ · } such that

we have left derivation
L1{ α }

C1{ α } and in the interaction fragment we have derivation
K1{ α }

L1{ α }. Now

observe L1{ α ` α } is provable in the interaction fragment as follows:

◦

K1{ ◦ }

K1{ α ` α }
L1{ α ` α }. Therefore,

by Lemma 4.5, there is a left proof of L1{ α ` α }. By using the left proof of L1{ α ` α }, a left
proof of α ` Q can be constructed as follows. Note that Lemma 4.10 can be applied, since for
all y appearing in K1{ · } we have y # α, and in the derivation from L1{ · } to K1{ · } only the
interaction fragment is applied; hence for all y appearing as binders in L1{ · }, we have y # α.

◦

L1{ α ` α }
a left proof (Lemma 4.5)

α `L1{ α }
in the cooling fragment (Lemma 4.10)

α ` C1{ α }
in the a left derivation (Lemma 4.9)

α ` Q
in the cooling fragment (Lemma 4.4)

Inductive case involving times. Consider the inductive case where ` (P0 ` P1) ( R, where
P0, P1 and R contain no times operator (hence P0 and P1 contain no par operator). Firstly apply
splitting: By Lemma 4.7, there are Q0 and Q1 containing no times operator and killing context

K2{ · } such that there is a derivation
K2{ Q0 ` Q1 }

R such that ` P0 ( Q0 and ` P1 ( Q1.
By Lemma 4.4, since R and K2{ Q0 ` Q1 } contain no times, there exists S such that there is a

derivation in the cooling fragment
S
R, and derivation in the interaction fragment

K2{ Q0 ` Q1 }

S .
Furthermore, by Lemma 4.8, there exists context C2{ · } and processes S 0 and S 1, such that we
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have two derivations using only the interaction fragment
Q0

S 0 and
Q1

S 1 , and derivation over contexts
K2{ · }

C2{ · } ; and also we have in the cooling fragment a derivation
C2{ S 0 ` S 1 }

S . By Lemma 4.9,

there exists left context L2{ · } such that there exists a left derivation over contexts
L2{ · }

C2{ · }, and

another derivation over contexts
K2{ · }

L2{ · } using only the interaction fragment.

Now, since ` P0 ( Q0 and
Q0

S 0 we have
P0 ( Q0

P0 ( S 0 , hence ` P0 ( S 0; and similarly ` P1 ( S 1.
Therefore, by the induction hypothesis (noting the size of P0 and P1 are strictly less then the
size of P0 ` P1), we have ` P0 ( S 0 and ` P1 ( S 1 must have left proofs. Furthermore, since
K2{ ◦ }

L2{ ◦ } in the interaction fragment, we can construct a proof of L2{ ◦ } using the interaction
fragment only; hence, by Lemma 4.5, there is a left proof of L2{ ◦ }.

Using the derivations constructed above, and applying Lemma 4.10, we can construct the
following left proof.

◦

L2{ ◦ }
a left derivation (Lemma 4.5)

L2{ P1 ( S 1 }
a left derivation (by induction hypothesis)

L2{ (P0 ( S 0) � (P1 ( S 1) }
a left derivation (by induction hypothesis)

L2
{ (

P0 � P1

)
` S 0 ` S 1

} by the switch rule

(
P0 � P1

)
`L2{ S 0 ` S 1 }

in the cooling fragment (Lemma 4.10)

(
P0 � P1

)
` C2{ S 0 ` S 1 }

a left derivation (Lemma 4.9)

(
P0 � P1

)
` S

in the cooling fragment (Lemma 4.8)

(P0 ` P1)( R
in the cooling fragment (Lemma 4.4)

Case involving new quantifier. Consider the inductive case where ` Иx.P ( R, where P
and R contain no times operator (hence Эx.P contains no par). Since, ` Эx.P ` R, by splitting
(Lemma 4.7), there are formulae V and W containing no times operator, such that: x # V and

` P ` W, either V = W or V = Иx.W, and also we have derivation
V
R. There are two cases to

consider, both resulting in a left proof of Иx.P( R.

In the first case where V = W, since
W
R and ` P ` W, we have ` P ` R; hence, by the induction

hypothesis (which can be applied since the size of P is strictly less then the size of Иx.P), there
must be a left proof of ` P( R. By α-conversion, we can assume x # R, hence we can construct

the following left proof:

◦

Иx.◦
by the tidy rule

Иx.(P( R)
a left proof by the induction hypothesis

Иx.P ` R
by the extrude new rule

Иx.P( R
by the fresh rule

In the second case where V = Иx.W, since
Иx.W

R , and R and Иx.W contain no times operator,
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by Lemma 4.4, there exists S such that
S
R in the cooling fragment and

Иx.W
S in the interaction

fragment. By Lemma 4.8, since
Иx.W

S in the interaction fragment, there exist context C3{ · }

and formula U such that we have:
C3{ Иx.U }

S in the cooling fragment, and also
{ · }

C3{ · } and
W
U

using the interaction fragment only. Hence, by Lemma 4.9, there exists left context L3{ · } such

that we can construct a left derivation over contexts
L3{ · }

C3{ · }, and derivation
{ · }

L3{ · } using the

interaction fragment only. Furthermore, observe,

◦

Иx.◦
L3{ Иx.◦ } using the interaction fragment only;

hence, by Lemma 4.5, we have a left proof of L3{ Иx.◦ }. Since
W
U , and ` P ( W, we have

` P ( U; hence, by the induction hypothesis, we have a left proof of P ( U. Thus we can
construct the following left proof, as required.

◦

L3{ Иx.◦ }
a left derivation (by Lemma 4.5)

L3{ Иx.(P( U) }
a left derivation (by induction hypothesis)

L3{ Иx.P( Иx.U }
by the close rule

Иx.P( L3{ Иx.U }
in the cooling fragment (by Lemma 4.10)

Иx.P( C3{ Иx.U }
a left derivation (by Lemma 4.9)

Иx.P( S
in the cooling fragment (by Lemma 4.8)

Иx.P( R
in the cooling fragment (by Lemma 4.4)

Notice the above cases are similar. Remaining inductive cases follow the same pattern.

In a left proof, we can always identify the bottommost atomic interaction rule, as expressed in
the following lemma.

Lemma 4.12. For any left proof of P in BV1 containing at least one instance of the atomic
interaction rule, there exists left context L{ · } and atom α such that:

— There exists a derivation of the form
L{ α ` α }

P in the cooling fragment of BV1.
— There exists a left proof of L{ ◦ } in BV1.

The subtlety of the above lemma is that the bottommost rule of the interaction fragment may be
a tidy rule. In this scenario, it is always possible to remove such tidy rules from the proof until
the bottommost rule of the interaction fragment is an instance of atomic interaction.

4.3. Permuting nominal quantifiers to expand their scope

We require two technical lemmas for normalising proofs with name binders. Extrusion of names
is when a private name is sent over the network and becomes known by another process that
receives the message. A challenge when handling extrusion is that the scope of the binder for the
name should be expanded such that the process receiving the name is in the scope of the name
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binder. In order to handle the expansion of the scope of name binders, we require the following
technical devices.

In what follows the quantifier we wish to expand we identify using a box. We require the
concept of when quantifiers are connected through a derivation. To identify connected quantifiers,
we ensure that, if a quantifier is in a box in the conclusion, then it is also in a box in the premiss;
where the following rules are treated in a special way.

— The medial new rule duplicates boxed quantifiers:

C
{

Иx. P / Иx. Q
}

C
{

Иx. (P / Q)
}

.
— Instances of suspend and close rules connect two boxed nominal quantifiers in the conclusion,

as follows, where � ∈ {`, /}.

C
{

Эx. (P � Q)
}

C
{

Эx. P � Эx. Q
}

and

C
{

Иx. (P ` Q)
}

C
{

Иx. P ` Эx. Q
}
.

— Instances of tidy name and fresh end or begin paths:

C{ ◦ }

C
{

Иx. ◦
}

or

C
{

Иx. P
}

C{ Эx.P } or

C{ Иx.P }

C
{

Эx.
}
.

A proof, containing boxed nominal quantifiers is minimally connected, whenever all boxes are
connected in the proof, as described above, and no box can be removed without either violating
connectedness or removing all boxes. To understand this concept consider the following example
derivation, where boxed quantifiers trace the path of a new connective.(

Иy. Иx. ◦ / Иy. Иx. by
)
` Эy.by(

Иy. Иx. (ax ` ax) / Иy. Иx. by
)
` Эy.by

atomic interaction

(
Иy.

(
Иx. ax ` Эx. ax

)
/ Иy. Иx. by

)
` Эy.by

close

((
Иy. Иx. ax ` Эx. ax

)
/ Иy. Иx. by

)
` Эy.by

extrude new

(
Иy. Иx. ax / Иy. Иx. by

)
` Эx. ax ` Эy.by

sequence

Иy.
(

Иx. ax / Иx. by
)
` Эx. ax ` Эy.by

medial new

Иy. Иx.
(
ax / by

)
` Эx. ax ` Эy.by

medial new

We also require the following definition removing boxed quantifiers from formulae, where κ
is ◦ or an atom,

Q

∈ {∀,И,Э,∃} and � ∈ {�, /,`}.

rm(

Q

x. P) = rm(P) rm(

Q

y.P) =

Q

y.rm(P) rm(P � Q) = rm(P) � rm(Q) rm(κ) = κ

Using the above devices we can establish the following normalisation lemma.

Lemma 4.13. If ` C{ P }, where P contains at least one minimally connected boxed new quan-
tifier Иx. , and x only appears bound by boxed quantifiers in C{ P } (avoiding name confusion),
then ` C{ Иx.rm(P) }.

Proof. The proof is established by induction on the structure of the derivation. One case is
illustrated. Consider the case where the bottommost rule of a proof is of the following form,
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where x # P, x # R and no boxed quantifier appears in P; hence rm(P) = P.

C
{

P ` Иx. (Q ` R)
}

C
{

P ` Иx. Q ` R
} extrude new

By the induction hypothesis C{ Иx.rm(P ` Q ` R) } is provable, hence ` C{ P ` Иx.rm(Q ` R) },

since
C{ Иx.(P ` rm(Q ` R)) }
C{ P ` Иx.rm(Q ` R) } and C{ Иx.(P ` rm(Q ` R)) } = C{ Иx.rm(P ` Q ` R) }.

Consider again the example provided immediately before Lemma 4.13. The function rm can be
applied to that example derivation to obtain the derivation below. Observe the boxed quantifiers
and redundant rules have been deleted; also Иx is reinserted with a wider scope.

Иx.
(
Иy.◦ / Иy.by

)
` Эy.by

Иx.
(
Иy.(ax ` ax) / Иy.by

)
` Эy.by

atomic interaction

Иx.
(
(Иy.ax ` ax) / Иy.by

)
` Эy.by

extrude new

Иx.
((

Иy.ax / Иy.by
)
` ax

)
` Эy.by

sequence

Иx.
(
Иy.

(
ax / by

)
` ax

)
` Эy.by

medial new

Note the scope of universal quantifiers in the conclusion of a proof can also be expanded, due
to the following implications, where � ∈ {�, /,`}, Q

∈ {∀,И,Э,∃} and x # R.

` ∀x.P � R( ∀x.(P � R) ` R � ∀x.Q( ∀x.(R � Q) `

Q

x.∀y.P( ∀y.

Q

x.P

The above implications show that universal quantification distributes over all other operators, as
long as name capture is avoided. Thus the process of expanding the scope of universal quantifiers
is simpler than for nominal quantifiers.

4.4. Permuting exists to the bottom of certain derivations

For certain derivations, it is possible to permute the select1 rule, concerning the instantiation
of existential quantifiers, to the bottom of the derivation; as long as the select1 rule does not
commute with an extrusion rule binding a variable in the term introduced. To understand this
subtlety, consider the following derivation, where x # P.

Иx.
(
ax `

(
ax / P

{
x/y

}))
Иx.(ax ` ∃y.(ay / P)) select1

Иx.ax ` ∃y.(ay / P) extrude new

The instance of the select1 rule above cannot permute with the instance of the extrude name rule.
Fortunately, this situation can be avoided for formulae relevant to embedding processes by first
expanding the scope of nominal and universal quantifiers, using Lemma 4.13. This leads to the
following normalisation property.

Lemma 4.14. Consider a derivation in the cooling fragment of the form

L′
{
∃x. Q

}
L
{
∃x. P

}
, where

an existential quantifier is identified by a box. Also, assume t is such that: if there is a quantifier
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Q

∈ {∀,И} such that a rule of of the form

C

{ Q

y.
(
R ` ∃x. S

) }
C

{ Q

y. R ` ∃x. S
}

appears in the derivation, then

the variable y bound by

Q

is such that y # t. In such a scenario, a derivation
L′

{
Q
{t/x

} }
L
{

P
{t/x

} }
can be

constructed in the cooling fragment.

5. Constructing Labelled Transitions from Proofs

This section, combines results from the previous sections to establish the main result of the paper
(Theorem 3.8). In order to ensure all scenarios are covered, we require the following definition
and lemma. Observe that process contexts transform to left contexts when used in embeddings.

Definition 5.1. A process context P{ · } is defined according to the following grammar, where
p ranges over π-calculus processes: P{ · }F { · } | P{ · } | p | p | P{ · } | νx.P{ · }.

We say a process context P{ · } binds variable x, when there appears a νx. in scope of the hole
of the context. That is the context is such that P{ · } = P0

{
νx.P1{ · }

}
.

Lemma 5.2.
— For π-calculus process q and process context P{ · } that binds neither x nor z, the following

labelled transition exists: P{ xz.q } xzI P{ q }.
— Assuming x and z are not bound by P1{ · } and P2{ · }, there exists the following transition.

P0
{
P1{ xz.p } | P2{ x(y).q }

}
τ I P0

{
P1{ p } | P2

{
q
{
z/y

} } }
— Where x and z are not bound by P1{ · }, P2{ · }, or P3{ · } and z is fresh for all processes

appearing in the contexts P1{ · } and P3{ · }, the following transition exists:

P0
{
P1

{
νz.P2{ xz.p }

}
| P3{ x(z).q }

}
τ I P0

{
νz.

(
P1

{
P2{ p }

}
| P3{ q }

) }
— Assume q is a π-calculus process and P0{ · } and P1{ · } are a process contexts that do

not bind x and z; and z is fresh for P0{ · }. Under these conditions, the following labelled
transition exists: P0

{
νz.P1{ xz.q }

}
x[z]I P0

{
P1{ q }

}
.

— Assuming x and y are not bound by P{ · } and x is fresh for P{ · }, there is always the
following labelled transition: P{ y(x).q } y(x)

I P{ q }.

Similar situations where processes composed by parallel composition are swapped also hold.

Proof. The most involved case where a bound output interacts with an input is presented.
Consider where x and z are not bound by P1{ · }, P2{ · }, or P3{ · } and z is fresh for all
processes appearing in the contexts P1{ · } and P3{ · }.

Since x(z).q x(z)
I q and xz.p xzI p, by induction on the structure of P3{ · } and P2{ · }, we

have P3{ x(z).q } x(z)
I P3{ q } and P2{ xz.p } xzI P2{ p }. Thereby νz.P2{ xz.p } x[z]I P2{ p },

so, by induction on the structure of P1{ · }, we have P1
{
νz.P2{ xz.p }

}
x[z]I P1

{
P2{ p }

}
.

Thereby, by interaction of labels,P1
{
νz.P2{ xz.p }

}
| P3{ x(z).q } τ I νz.

(
P1

{
P2{ p }

}
| P3{ q }

)
.

Hence, by structural induction on context P0{ · }, we have constructed the following transition
as required: P0

{
P1

{
νz.P2{ xz.p }

}
| P3{ x(z).q }

}
τ I P0

{
νz.

(
P1

{
P2{ p }

}
| P3{ q }

) }
.
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5.1. Key scenarios for extracting executions

Here we identify key scenarios required for inducing labelled transitions, while preserving prov-
ability. In each scenario, consider a proof of the following form, where L{ · } is a left context.

◦

L{ ◦ }
a left proof

L{ xz ` xz }
using atomic interaction

P
using the cooling fragment only

Recall, by Lemma 4.12, this form can always be achieved for left proofs with at least one atom.
Now, observe, moving upwards in a proof no rule of BV1 introduces atoms or quantifiers.

Hence atom xz and co-atom xz involved in the atomic interaction rule must also appear in the
conclusion, P. Furthermore, since the bottommost interaction rule is always in a left context and
cooling rules preserve this property, the atom also appears in a left context in the conclusion of
the proof. These observations allow us to identify the following scenarios, all essential for the
main result of this paper.

5.1.1. Scenario for inducing free output transitions. The simplest scenario is where, in a left
proof, the bottommost atomic interaction rule involves an atom xz that can be traced to two
particular sub-formulae in the conclusion of the proof, each an embedding of a process xz.p and
P{ xz.q } respectively.

Lemma 5.3. Assume ` L{ ◦ } holds and
L{ xz ` xz }

K
{ �

xz.p
�
π (
�
P{ xz.q }

�
π

}
is a derivation in the

cooling fragment of BV1, such that p and q are π-calculus processes, K{ · } is a killing context,
L{ · } is a left context, P{ · } is a process context, x and z are not bound by P{ · }, and the
instances of xz in the conclusion and premiss are connected.

Under these assumptions, ` K
{ �

p
�
π (
�
P{ q }

�
π

}
holds.

Notice the former process xz.p is in a form where it has committed to performing a free out-
put, indicating the process can only perform action xz, after which process p is reached. The
latter process P{ xz.q } is ready to perform an action xz, assuming x and z are free variables. In
this scenario, the action in each sub-formula can be removed from the proof while preserving
provability, as described in what follows.

This scenario is no more complex than the proof of the established result relating executions of
BCCS certain proofs in BV, Theorem 2.1. Simply remove the instances of atoms xz and xz from

the derivation in the cooling fragment to obtain derivation

L{ ◦ }

K
{ �

p
�
π
` �P{ q }

�
π

}
, from which a

proof of K
{ �

p
�
π (
�
P{ q }

�
π

}
can be constructed, as required.

Observe some rules become redundant, so are removed from the proof in this process. For
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example consider a left proof beginning with the following derivation.
◦�

q
�
π ( Иy.

�
p
�
π

a left proof

Иy.◦ /
(�

q
�
π ( Иy.

�
p
�
π

) tidy new

Иy.
(

xz ` xz
)
/
(�

q
�
π ( Иy.

�
p
�
π

) atomic interaction

(
xz ` Иy. xz

)
/
(�

q
�
π ( Иy.

�
p
�
π

) extrude new

(
xz /
�
q
�
π

)
`

(
Иy. xz / Иy.

�
p
�
π

) sequence

(
xz /
�
q
�
π

)
` Иy.

(
xz /
�

p
�
π

) medial new

In the above proof, after removing the highlighted atoms xz and xz, instances of the rules se-
quence, medial new, extrude new, and tidy new are deleted, yielding a proof of

�
q
�
π ( Иy.

�
p
�
π.

5.1.2. Scenario for inducing an internal interaction involving free output. In the second sce-
nario, the atom xz involved in the bottommost atomic interaction in a left proof can be traced
to a free output and input action prefix in a process that can perform a τ-transition of the form
P0

{
P1{ xz.p } | P2{ x(y).q }

}
. This scenario allows us to induce τ-transitions in the process on

the right hand side of a linear implication, which is essential for weak simulations.

Lemma 5.4. Assume ` L{ ◦ } holds and

L{ xz ` xz }

K
{
~s�π (

�
P0

{
P1{ xz.p } | P2{ x(y).q }

}�
π

}
is a

derivation in the cooling fragment where s, p and q are π-calculus processes, Pi{ · } are pro-
cess contexts and L{ · } is a left context, where atoms xz in the premiss of the derivation can be
traced to the head of the sub-processes indicated in the conclusion, and assume x and z are not
bound by P1{ · } and P2{ · }.

Under the above assumptions, we have: ` K
{
~s�π (

�
P0

{
P1{ p } | P2

{
q
{
z/y

} } }�
π

}
.

To establish the above lemma, we require the decomposition result for existential quantifiers in
Lemma 4.14, in order to handle the existential quantifier in the embedding of the input. Also,
observe that, if formula ∃x.P is in a left context, it will never be the case that ∃x.P is nested
inside another existential quantifier; where a nested quantifier would be able to influence the
term introduced.

By the above observations, the derivation in the cooling fragment must be of the following
form, for some left context L′{ · } and formula R where the existential quantifier from the in-
put action is underlined and each Li{ · } is structurally congruent to an embedding of the re-
spective Pi{ · }. Thereby, the conclusion of the following derivation is structurally congruent to
K

{
~s�π (

�
P0

{
P1{ xz.p } | P2{ x(y).q }

}�
π

}
.

L{ xz ` xz }

L′
{

R
{
z/y

} } using the cooling fragment only

L′
{
∃y. R

} by the select1 rule

K
{
~s�π ( L0

{
L1{ xz /

�
p
�
π

} `L2
{
∃y.

(
xy /
�
q
�
π

) } } } using the cooling fragment only

Since P1{ · } and P2{ · } do not bind x and z; we have that L1{ · } and L2{ · } do not bind x
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and z. Thereby, we can appeal to Lemma 4.14 to construct the following derivation in the cooling
fragment of BV1.

L{ xz ` xz }
L′{ R{z/x} }

a derivation in the cooling fragment

K
{
~s�π ( L0

{
L1{ xz /

�
p
�
π

} `L2
{

xz /
�
q
{
z/y

}�
π

} } } a derivation in the cooling fragment

We can now, similarly to Lemma 5.3, delete the instances of the atoms xz and xz involved in the
bottommost interaction everywhere in the proof, while removing redundant rules. This leads to
a left proof of the following formula, as desired: K

{
~s�π (

�
P0

{
P1{ p } | P2

{
q
{
z/y

} } }�
π

}
.

5.1.3. Scenario for inducing internal interaction involving bound output. Consider when both
atoms of the bottommost atomic interaction rule appear in the embedding of a process of the
form P0

{
P1

{
νz.P2{ xz.p }

}
| P3{ x(z).q }

}
, where z is bound by new. In this scenario, clearly a

τ-transition can be induced as formally stated in the following lemma.

Lemma 5.5. Assume ` L{ ◦ } holds and

L{ xz ` xz }

K
{
~s�π (

�
P0

{
P1

{
νz.P2{ xz.p }

}
| P3{ x(z).q }

}�
π

}
is a derivation in the cooling fragment, where x and z are not bound by P1{ · }, P2{ · }, or
P3{ · } and z is fresh for P1{ · } and P3{ · }.

In this scenario, ` K
{
~s�π (

�
P0

{
νz.

(
P1

{
P2{ p }

}
| P3{ q }

) }�
π

}
holds.

To establish the above lemma, firstly we expand the scope of nominal quantifiers, to obtain a
proof of a form similar to in the previous scenario. By Lemma 4.13, we can expand the scope of
quantifiers, to obtain the following derivation in the cooling fragment.

L{ xz ` xz }

K
{
~s�π (

�
P0

{
νz.

(
P1

{
P2{ xz.p }

}
| P3{ x(z).q }

) }�
π

} a derivation in the cooling fragment

Hence, by following the same strategy as for Lemma 5.4, we have a procedure for constructing
a proof of the following formula, as required: K

{
~s�π (

�
P0

{
νz.

(
P1

{
P2{ p }

}
| P3{ q }

) }�
π

}
.

5.1.4. Scenario inducing a bound output transition. Consider the scenario where the bottom-
most atomic interaction rule applies to an atom that can be traced to process embeddings of the
form νz.xz.s and P0

{
νz.P1{ xz.q }

}
— two processes ready to output a fresh name on channel x.

Lemma 5.6. Suppose,

L{ xz ` xz }

K
{ �
νz.xz.s

�
π (
�
P0

{
νz.P1{ xz.q }

}�
π

}
is a derivation in the cooling

fragment of BV1, where s and q are π-calculus process, L{ · } is a left context, P0{ · } and
P1{ · } are process contexts that do not bind x and z; and z is fresh for P0{ · }. Also, assume
L{ ◦ } has a left proof.

In this scenario, ` K
{
Иz.

(
~s�π (

�
P0

{
P1{ q }

}�
π

) }
holds.

The proof is similar to the previous scenario where a bound output is involved in an interac-
tion. By applying Lemma 4.13, we can pull the quantifier Иz to the outermost level, removing
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corresponding wen operators to obtain a derivation in the cooling fragment of the following form.

L{ xz ` xz }

K
{
Иz.

((
xz / ~s�π

)
`
�
P0

{
P1{ xz.q }

}�
π

) } a derivation in the cooling fragment

Hence, by deleting the interacting atoms, a proof of K
{
Иz.

(
~s�π (

�
P0

{
P1{ q }

}�
π

) }
, can be

constructed as required.

5.1.5. Scenario inducing an input transition. The scenario for inputs is where the bottommost
atomic interaction in a left proof involves an atom that can be traced to the prefix in processes
embeddings of the following form in the conclusion of a proof: x(z).s and P{ x(z).q }, each ready
to perform an input action.

Lemma 5.7. Assume ` L{ ◦ } holds and
L{ xz ` xz }

K
{
~x(z).s�π (

�
P{ x(z).q }

�
π

}
is a derivation in the

cooling fragment, where x and z are not bound by process context P{ · } and z does not appear
free in P{ x(z).q } and L{ · } is a left context.

In this scenario ` K
{
∀z.

(
~s�π (

�
P{ q }

�
π

) }
holds.

Similarly to the scenarios involving bound output actions, the trick to establish the above
lemma is to first move the universal quantifier binding the name in the input action out of the way.
Since ` ∀z.

(
xz / ~s�π

)
`�P{ x(z).q }

�
π ( ∀z.

((
xz / ~s�π

)
` �P{ x(z).q }

�
π

)
holds, by Theorem 3.2,

we can construct a derivation in the cooling fragment of the following form.

L{ xz ` xz }

K
{
∀z.

((
xz / ~s�π

)
` �P{ x(z).q }

�
π

) } a derivation in the cooling fragment

Observe that the above derivation in the cooling fragment must be of the following form, where
L{ · } is structurally equivalent to the embedding of P{ · }.

L{ xz ` xz }
L′{ R }

a derivation in the cooling fragment

L′
{
∃z. R

} by the select1 rule

K
{
∀z.

((
xz / ~s�π

)
`L

{
∃z.

(
xz / ~Q�π

) }) } a derivation in the cooling fragment

Hence by Lemma 4.14 there exists a derivation in the cooling fragment of the following form.

L{ xz ` xz }
L′{ R }

a derivation in the cooling fragment

K
{
∀z.

((
xz / ~s�π

)
`L{

xz /
�
q
�
π

}) } a derivation in the cooling fragment

By removing the pair of atoms xz and xz from the above derivation, we can construct the deriva-

tion

L{ ◦ }

K
{
∀z.

(
~s�π `L{ �

q
�
π

}) }
. Thereby, since we assumed L{ ◦ } has a proof, we can construct

a proof of K
{
∀z.

(
~s�π (

�
P{ q }

�
π

) }
.
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5.2. Proof of the soundness of linear implication with respect to weak simulation.

We are now ready to prove the main result of this paper. We require the following intermediate
definition mapping histories to a list of quantifiers И and ∀.

Definition 5.8. Let the abbreviation Hh.P be the formula defined such that Hε.P = P and,
inductively,H(h · xo).P = Hh.Иx.P andH

(
h · xi

)
.P = Hh.∀x.P.

Given a history h, we define a trimming function dhe as follows:

— dεe = ε,
— If h = h′.x•, where • ∈ {i, o}, and x < n(h′) then dhe = dh′e.x•. Otherwise, dhe = dh′e.

The embedding of histories in Definition 5.8 satisfies the following lemma.

Lemma 5.9. If σ respects h and h′ = dhe, then if ` Hh.P holds then ` Hh′.Pσ.

The following proposition combines the intermediate results established throughout this paper:
cut elimination (Theorem 3.2); the mapping of labelled transitions to proofs (Lemma 3.11); the
normalisation results Proposition 4.11, Lemmas 4.13 and 4.14; the above Lemma 5.9; as well as
the observations made in Lemmas 5.3 to 5.7 in the previous section.

Proposition 5.10. Define ternary relation R such that p Rh q whenever ` Hh.
(�

p
�
π (
�
q
�
π

)
.

The relation R is a complete weak open simulation.

Proof. Assume that ` Hh.
(�

p
�
π (
�
q
�
π

)
holds, i.e. p Rh q. There are six cases to consider to

show R is closed under the definition of complete weak open simulation.
To show preservation under respectful substitutions, assume σ respects h, by Lemma 5.9,

` Hdhσe.
(�

p
�
π σ(

�
q
�
π σ

)
; hence, by Lemma 3.10, ` Hdhσe.

(�
pσ
�
π (
�
qσ
�
π

)
, as required.

To show preservation under τ-transitions, assume p τ I p′, and observe `
�

p′
�
πI (

�
p
�
πI ,

by Lemma 3.11. Therefore, by Theorem 3.2, ` Иx1, . . .Иxn.
(�

p′
�
π (
�
q
�
π

)
holds, as required.

Check termination potential is preserved. Assume, in this case, pX holds. Now, consider,
more generally, r such that, Hh.

(�
p
�
π ( ~r�π

)
. By Proposition 4.11, Hh.

(�
p
�
π ( ~r�π

)
has a

left proof, and, whenever there is at least one atom, by Lemma 4.12, the bottommost rule of the
interaction fragment can arranged to be an instance of the atomic interaction rule. Since there
are no atoms in p, three possible scenarios can occur:

—There are no atoms in ~r�π and hence process r is also such that rX.
—Process q is of the form P1

{
P2{ xy.r1 } | P

3{ x(z).r2 }
}
, where x, y and z are not bound by

P2{ · } and P3{ · }; and, furthermore, the atoms in the bottommost atomic interaction can
be traced to the atoms in the output and input prefixes identified. In this case, by Lemma 5.4,
we can construct a proof of ` Hh.

(�
p
�
π (
�
P1

{
P2{ r1 } | P

3{ r2{
y/z} }

}�
π

)
. Furthermore, by

Lemma 5.2, P1
{
P2{ xy.r1 } | P

3{ x(z).r2 }
}

τ I P1
{
P2{ r1 } | P

3{ r2{
y/z} }

}
.

—Process q is of the form q = P0
{
P1

{
νz.P2{ xz.r1 }

}
| P3{ x(z).r2 }

}
, where x and z are not

bound by P1{ · }, P2{ · } and P3{ · }, z is fresh for P1{ · } and P3{ · }; and, furthermore,
the atoms in the bottommost atomic interaction can be traced to the atoms in the output and
input prefixes identified. In this case, by Lemma 5.5, we can construct a proof of the fol-
lowing:Hh.

(�
p
�
π (
�
P0

{
νz.

(
P1

{
P2{ r1 }

}
| P3{ r2 }

) }�
π

)
. So, by Lemma 5.2, we have the

following: P0
{
P1

{
νz.P2{ xz.r1 }

}
| P3{ x(z).r2 }

}
τ I P0

{
νz.

(
P1

{
P2{ r1 }

}
| P3{ r2 }

) }
.
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Since τ-transitions strictly decrease the size of the processes andHh.
(�

p
�
π (
�
q
�
π

)
only finitely

many τ-transitions q = q1
τ I q2 . . .

τ I qn, can be applied. Furthermore,Hh.
(�

p
�
π (
�
qn
�
π

)
hence, since no further τ-transition can be enabled, by the above case analysis, qnX holds. Hence
we can construct qn such that q I qn and qnX holds, as required.

Check preservation under free outputs. Assume, in this case, p xzI p′. Firstly consider,
more generally, judgements of the form ` Hh.

(�
xz.p′
�
π ( ~r�π

)
. By Proposition 4.11, we can

construct a left proof such that, by Lemma 4.12, the bottommost rule in the interaction fragment
is an atomic interaction rule. There are two possibilities:

—As described in detail in the previous case, atoms in the bottommost atomic interaction rule
correspond to an input and output prefix in r; hence, by Lemma 5.4 or Lemma 5.5 and also ap-
pealing to Lemma 5.2, we can construct r′ such that r τ I r′ and ` Hh.

(�
xz.p′
�
π ( ~r

′�π
)
.

—Following Lemma 5.3, the atoms in the bottommost atomic interaction rule correspond to xz
and an output prefix in r, where r = P{ xz.s } such that x and z are not bound by P{ · }; and
we can construct a proof of ` Hh.

(�
p′
�
π ( ~P{ s }�π

)
. Also, by Lemma 5.2, r xzI P{ s }.

By Lemma 3.11, `
�

xz.p′
�
π (

�
p
�
π; hence, by Theorem 3.2, ` Hh.

(�
xz.p′
�
π (
�
q
�
π

)
. Since

τ-transitions strictly decrease the size of the process, and ` Hh.
(�

xz.p′
�
π (
�
q
�
π

)
, finitely many

τ-transitions can be applied q = q1
τ I q2

τ I . . . τ I qn. Since no further τ-transition is possi-
ble, output transition p xzI qn must be enabled and furthermore we have ` Hh.

(�
p′
�
π
` �qn

�
π

)
.

Thereby, we can construct qn such that q xz
I qn and p′ Rh qn as required.

Check preservation under bound outputs. Consider the cases where p x[z]I p′ such that z
is fresh for p, q and h. Consider judgements of the form ` Hh.

(�
νz.xz.p′

�
π ( ~r�π

)
, by Proposi-

tion 4.11, we can construct a left proof such that the bottommost rule in the interaction fragment
is an atomic interaction rule. There are two possibilities:

—As previously, Lemma 5.4 or Lemma 5.5 applies; thereby, appealing also to Lemma 5.2 there
exists r′ such that r τ I r′ and ` Hh.

(�
νz.xz.p′

�
π ( ~r

′�π
)
.

—The atoms in the bottommost atomic interaction rule correspond to the atom xz and an output
in r, where r = P1

{
νz.P2{ xz.s }

}
such that x and z are not bound by P1{ · } or P2{ · }

and z is fresh for P1{ · }. In this case, following Lemma 5.6, we can construct a proof of
` Hh.

(
Иz.

(�
p′
�
π (
�
P1

{
P2{ s }

}�
π

))
and furthermore, by Lemma 5.2, r xzI P1

{
P2{ s }

}
.

By Lemma 3.11, `
�
νz.xz.p′

�
π (

�
p
�
π; hence, by Theorem 3.2, ` Hh.

(�
νz.xz.p′

�
π (
�
q
�
π

)
.

Now, since τ-transitions strictly decrease the size of the process r only finitely many τ-transitions
can be induced; after which, for some q′ and r the output transition r xzI q′ must be en-
abled such that ` Hh.

(
Иz.

(�
p′
�
π (
�
q′
�
π

))
; hence, by definition of the embedding of histories,

` H(h · zo).
(�

p′
�
π (
�
q′
�
π

)
. Thereby we have q′ such that q xz

I q′ and p′ Rh·zo q′, as required.
Check preservation under inputs. Assume in this case p x(z)

I p′ such that z is fresh for p,
q and h. For a judgement of the form ` Hh.

(�
x(z).p′

�
π ( ~r�π

)
, by Proposition 4.11, we can

construct a left proof such that, Lemma 4.12, the bottommost rule in the interaction fragment is
an atomic interaction rule; thereby identifying the following two possibilities:

—As in other cases, Lemma 5.4 or Lemma 5.5 applies, along with Lemma 5.2 so there exists
r′ such that r τ I r′ and ` Hh.

(�
x(z).p′

�
π ( ~r

′�π
)
.

—The atoms in the bottommost atomic interaction rule correspond to the atom xz and an input
in r such that r = P{ x(z).s }, where x and z are not bound by P{ · } and z is fresh for P{ · }.
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In this case, Lemma 5.7 applies and hence ` Hh.
(
∀z.

(�
p′
�
π ( ~P{ s }�π

))
. Furthermore, by

Lemma 5.2, r x(z)
I P{ s }.

By Lemma 3.11, `
�

x(z).p′
�
π (
�

p
�
π; hence, by Theorem 3.2, ` Hh.

(�
x(z).p′

�
π (
�
q
�
π

)
. Since

τ-transitions strictly decrease the size of a process, finitely many τ-transitions can be applied
reaching s such that, for some q′, s x(z)

I q′ such that ` Hh.
(
∀z.

(�
p′
�
π (
�
q′
�
π

))
, thereby by the

definition of embeddings of histories ` H
(
h · zi

)
.
(�

p′
�
π (
�
q′
�
π

)
. Thereby we can construct q′

such that q x(z)
I q′ and p′ Rh·zi

q′, as required.
Thus R is closed under the definition of a complete weak open simulation.

Theorem 3.8, follows immediately from the above proposition as follows.

Proof of Theorem 3.8. Observe, if `
�

p
�
π (

�
q
�
π and fv(p) ∪ fv(q) ⊆ {x0, . . . , xn}, then

` ∀x0. . . .∀xn.
(�

p
�
π (
�
q
�
π

)
hence, by definition, ` H xi

0 · . . . · x
i
n.
(�

p
�
π (
�
q
�
π

)
. Therefore,

by Proposition 5.10, p Rxi
0·...·x

i
n q for a complete weak open simulation R; hence p � q.

5.3. Example of constructing a weak simulation from the proof of a linear implication.

All proofs in this paper are constructive, hence Theorem 3.8 provides a procedure for extracting
a complete weak open simulation from a proof of an implication. We illustrate this proceedure
on the following example of a left proof.

◦

∀a.∀b.Иk.◦
tidy

∀a.∀b.Иk.
(
ak ` ak

) atomic interaction

∀a.∀b.Иk.
((

bk ` bk
)
/
(
ak ` ak

)) atomic interaction

∀a.∀b.Иk.
((

bk / ak
)
`

(
bk / ak

)) sequence

∀a.∀b.Иk.
((

bk / ak
)
` ∃y.(by / ay)

) select1

∀a.∀b.Иk.
(
bk ` ak ` ∃y.(by / ay)

) sequence

∀a.∀b.
((

ab ` ab
)
/ Иk.

(
bk ` ak ` ∃y.(by / ay)

)) atomic interaction

∀a.∀b.
((

ab ` ab
)
/
(
Иk.

(
bk ` ak

)
` ∃y.(by / ay)

)) extrude new

∀a.∀b.
((

ab ` ab
)
/
(
Иk.bk ` Эk.ak ` ∃y.(by / ay)

)) close

∀a.∀b.
((

ab / Иk.bk
)
`

(
ab / (Эk.ak ` ∃y.(by / ay))

)) sequence

∀a.∀b.
(
∃x.

(
ax / Иk.xk

)
`

(
ab / (Эk.ak ` ∃y.(by / ay))

)) select1

∀a.∀b.
(
Эk.ak ` ∃x.

(
ax / Иk.xk

)
` ∃y.(by / ay) ` ab

) sequence

Hai · bi.
(�
νk.ak

�
π (
�
a(x).νk.xk | b(y).ay | ab

�
π

) definition

In the above proof, the bottommost interacting atoms and corresponding existential quantifier
are highlighted by boxes. Following Scenario 5.4: firstly, we apply Lemma 4.14 to apply a sub-
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stitution in place of the highlighted select1 rule; and, secondly, we remove the highlighted atoms
from the proof. Thereby we construct the following left proof.

◦

∀a.∀b. Иk. ◦
tidy

∀a.∀b. Иk.
(
ak ` ak

) atomic interaction

∀a.∀b. Иk.
((

bk ` bk
)
/
(
ak ` ak

)) atomic interaction

∀a.∀b. Иk.
((

bk / ak
)
`

(
bk / ak

)) sequence

∀a.∀b. Иk.
((

bk / ak
)
` ∃y.

(
by / ay

)) select1

∀a.∀b. Иk.
(

bk ` ak ` ∃y.
(

by / ay
)) sequence

∀a.∀b.
(

Иk.
(

bk ` ak
)
` ∃y.

(
bk / ay

)) extrude new

∀a.∀b.
(

Эk. ak ` Иk. bk ` ∃y.
(

by / ay
)) close

Hai · bi.
(�
νk.ak

�
π (
�
νk.bk | b(y).ay

�
π

) definition

Again, in the above proof, the bottommost interacting atoms and corresponding quantifers ap-
pear in boxes. Following Scenario 5.5: firstly, we apply Lemma 4.13 to expand the scope of
the new quantifier in the process embedding on the right of the implication; secondly, we apply
Lemma 4.14 to replace the highlighted existential quantifier with a substitution; and, thirdly, we
remove the highlighted atoms from the proof. This results in the following left proof.

◦

∀a.∀b. Иk. ◦
tidy

∀a.∀b. Иk.
(

ak ` ak
) atomic interaction

∀a.∀b.
(

Эk. ak ` Иk.
(
◦ ` ak

)) close

Hai · bi.
(�
νk.ak

�
π (
�
νk. (1 | ak)

�
π

) definition

Following Scenario 5.6, using Lemma 4.13, the above proof can be transformed to a left proof
of Hai · bi · ko.(~1�π ( ~1 | 1�π), employing tidy rules only. Notice the scope of the nominal
quantifiers in both process embeddings have been enlarged such that they become part of the
history. Thereby on the left of the implication in the conclusion of each proof we have constructed
transition νk.ak a[k]I 1, and on the right the following series of transitions.

a(x).νk.xk | b(y).ay | ab τ I νk.bk | b(y).ay τ I νk. (1 | ak) a[k]I 1 | 1

Notice (1 | 1)X, so termination potential is preserved. Hence relation S, consisting of triples
νk.ak Sai·bi

a(x).νk.xk | b(y).ay | ab and 1 Sai·bi·ko
1 | 1, is a complete weak open simulation.
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6. The Versatility of the Processes-as-Formulae Approach

We highlight the versatility of our approach by showing variants of the π-calculus can also be
embedded as processes in BV1 such that implication defines a sound preorder over processes.
We also discuss a surprising strict inequality in BV1 and how it arises naturally when both unre-
stricted input and private input coexist in a process calculus.

6.1. Extending results to the internal π-calculus

We briefly outline how the techniques in this paper can be extended to the internal π-calculus San-
giorgi (1996a), called the πI-calculus, where inputs are guaranteed to be private. The syntax and
semantics for a fragment of the πI-calculus is presented in Fig. 6. The private restriction on input
names is enforced by using Э in place of ∃ in the embedding of private inputs. We are able to
obtain that, for our embedding of πI-calculus processes as formulae in BV1, linear implication is
sound with respect to complete weak simulation, and hence also completed trace inclusion.

The embedding of πI-calculus processes as BV1 formulae is defined as follows.

~1�πI = ◦
�

p | q
�
πI =
�

p
�
πI ` �q�πI

�
νx.p
�
πI = Иx.

�
p
�
πI�

x[z].p
�
πI = Эz.

(
xz /
�

p
�
πI
) �

x[z].p
�
πI = Иz.

(
xz /
�

p
�
πI
)

Recall from the discussion in Section 3.2 that we use the syntax x[z] to represent private input
in the πI-calculus to syntactically disambiguate from the semantically distinct input x(z) in the
π-calculus. The output process x[z].p behaves much like the output νz.xz.p in the π-calculus,
where the private name binder νz appears immediately before the action that outputs the name z.

p F 1 (success)
νx.p (nu)
x[z].p (private input)
x[z].p (private output)
p | p (par)

π ::= τ | x[z] | x[z] (actions)

x[z].p x[z]
I p x[z].p x[z]

I p

p π
I q

νx.p π
I νx.q

x < n(π)

p x[z]
I p′ q x[z]

I q′

p | q τ
I νz.(p′ | q′)

p π
I r

p | q π
I r | q

if π = x[z] or π = x[z], z # q

Fig. 6. Syntax and labelled transitions for the πI-calculus (plus symmetric rules for p | q). Function
n(.) is such that n(x[z]) = n(x[z]) = {x, z} and n(τ) = ∅.

For every labelled transition there is a corresponding implication. As with the π-calculus,
Lemma 3.11, the proof follows from cut elimination for BV1 (Theorem 3.2), by induction over
the structure of the transition system.

Proposition 6.1. The following hold for πI-calculus processes.

— If p x[z]I q, then `
�

x[z].q
�
πI (

�
p
�
πI holds.

— If p x[z]I q, then `
�

x[z].q
�
πI (

�
p
�
πI holds.

— If p τ I q then `
�
q
�
πI (

�
p
�
πI .

We can define a fine notion of weak simulation for the πI-calculus (note the ‘open’ constraint
is irrelevant for the πI-calculus, since no distinct free variable can be unified in any context).



R. Horne and A. Tiu 34

Definition 6.2. A complete weak simulation is a relation, such that, if p R q, the following hold:

— If pX then there exists q′ such that q I q′ and q′X.
— If p τ I p′ then there exists q′ such that q τ

I q′ and p′ R q′.
— If p x[z]I p′, where z fresh for p and q, there exists q′ such that q x[z]

I q′ and p′ R q′.
— If p x[z]I p′, where z fresh for p and q, there exists q′ such that q x[z]

I q′ and p′ R q′.

Whenever there exists a complete weak simulation R such that p R q, we write p � q and say p
is simulated by q.

As for the π-calculus, we can established the soundness of linear implication with respect to
complete weak simulation for the πI-calculus.

Theorem 6.3. For πI-calculus processes, If `
�

p
�
πI (

�
q
�
πI then, p � q.

The proof follows a similar strategy to Proposition 5.10. The proof appeals to Proposition 6.1,
Theorem 3.2, Propositions 4.11 and Lemma 4.13, as well as a similar argument to Scenarios 5.5
and 5.6, involving actions with bound names.

6.2. Explaining curiosities regarding name extrusion

A curiosity of BV1 is that in general the scope of names can only by extruded and not contracted.
By this we mean that, when x # Q, there is not a proof of Иx.P` Q( Иx. (P ` Q) in general. A
logical reason for this restriction is that attempts to include an equivalence equating the formulae
Иx.P ` Q and Иx. (P ` Q), where x # Q, presented difficulties when proving cut elimination.
Instead we only have the rule extrude new in Fig. 4. Most likely, the unidirectional nature of
extrude new is for deeper reasons. To see this, observe that, with extrude new as an equality,
instead of a unidirectional rule, the implication

�
νz.az.νz.az

�
π (
�
νz.az.az

�
π would wrongly be

provable. Such an implication would be unsound with respect to weak simulation. The former
process outputs two distinct names, but the later cannot.

The curiosity regarding scope extrusion, mentioned above, can also be explained in terms of
the ability of BV1 to express both the π-calculus and the πI-calculus. To see this, suppose that we
provide semantics that combining the π-calculus and the πI-calculus. Such a semantics should
give a meaning to process a[x].a

[
y
]
| νz.az.az, where a[x].a

[
y
]

here represents private inputs of
the πI-calculus and νz.az.az is a π-calculus term that outputs the same fresh name twice. Naïvely,
we may wrongly think that the following two transitions form a completed trace.

a[x].a
[
y
] a[x]I a

[
y
] az.az azI az

νz.az.az a[z]I az

a[x].a
[
y
]
| νz.az.az τ I νz.

(
a
[
y
]
| az

) a
[
y
] a[z]I 1

az azI 1

νz.az a[z]I 1

a
[
y
]
| νz.az τ I νz.(1 | 1)

Suppose, in this hybrid π/πI-calculus setting, we wrongly assume νz.
(
a
[
y
]
| az

)
and a

[
y
]
| νz.az

are equivalent, thereby allowing the above τ-transitions to be applied one after another. By mak-
ing this flawed design decision, we would break the contract on the first private input. In partic-
ular, the fresh name z unified with x must be guaranteed freshness in the scope of x.

Fortunately, νz.
(
a
[
y
]
| az

)
is not equivalent to a

[
y
]
| νz.az, since the labelled transitions sys-

tem naturally only pushes fresh names outward. Therefore, νz.
(
a
[
y
]
| az

)
is deadlocked since az
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cannot guarantee the output is private in the relevant scope. Thus processe νz.
(
a
[
y
]
| az

)
is not

mutually similar to a
[
y
]
| νz.az. Although, we do have that νz.

(
a
[
y
]
| az

)
� a

[
y
]
| νz.az holds,

established by extending the results of this paper to a combined π/πI-calculus.

7. Conclusion

This work presents a purely logical embedding of π-calculus and πI-calculus processes as for-
mulae in a proof system. The main result is the soundness of linear implication in the logical
system with respect to a notion of weak simulation called complete weak open simulation (The-
orem 3.8). The proof is constructive, so such weak simulations can be constructed from linear
implications. This result sharpens evidence that linear implication objectively defines a preorder
over processes, preserved in all contexts, in the sense that the semantics of linear implication are
determined by the fundamental proof theoretic principal of cut elimination, rather than human de-
sign. The result is as a critical step in the roadmap towards situating properly this natural preorder
in the spectrum of preorders over processes. In particular, linear implication is a branching-time
preorder preserved in all contexts.

The paper also casts light on proof search in the calculus of structures. In Proposition 4.11, we
show, for a significant fragment of BV and BV1 (larger than previously considered), “left proofs”
can always be constructed, where interaction rules are applied only in certain “left contexts”.
This normalisation procedure ensures that the leftmost atom in a formula is involved in the bot-
tommost instance of an interaction rule. This suggests that, as for other proof systems Andreoli
(1992); Miller et al. (1991), there are significant useful fragments of the calculus of structures
for which we can achieve finer control of proof search.

Future work is to pursue the roadmap laid out at the beginning of Section 2. We aim to tighten
relationships between linear implication and established preorders over processes; pursuing the
hypothesis that (complete weak) variants of ST-simulation, van Glabbeek and Vaandrager (1987);
van Glabbeek and Goltz (2001), provide the tightest match for linear implication in the literature.
Also, we are in the process of further extending BV such that more expressive process calculi can
be embedded, e.g., featuring probabilistic choice. Indeed, one of the advantages of having estab-
lished that linear implication is a branching-time preorder, is that we know linear implication
also respects probabilistic testing, Deng et al. (2007).
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