
The Attacker Does not Always Hold the Initiative:
Attack Trees with External Refinement

Ross Horne1, Sjouke Mauw2, and Alwen Tiu3

1 School of Computer Science and Engineering, Nanyang Technological University, Singapore
rhorne@ntu.edu.sg

2 CSC/SnT, University of Luxembourg sjouke.mauw@uni.lu
3 Research School of Computer Science, Australian National University, Canberra, Australia

alwen.tiu@anu.edu.au

Abstract. Attack trees provide a structure to an attack scenario, where disjunc-
tions represent choices decomposing attacker’s goals into smaller subgoals. This
paper investigates the nature of choices in attack trees. For some choices, the
attacker has the initiative, but for other choices either the environment or an
active defender decides. A semantics for attack trees combining both types of
choice is expressed in linear logic and connections with extensive-form games
are highlighted. The linear logic semantics defines a specialisation preorder en-
abling trees, not necessarily equal, to be compared in such a way that all strategies
are preserved.

Keywords: attack trees, linear logic, extensive-form games, game semantics

1 Introduction

An attack tree is a rooted labelled tree profiling the goals of an attacker. The use of
AND-OR trees for security modelling dates back to 1999, when Schneier proposed
attack trees as a simple and comprehensive way of representing security scenarios and
to allow for their quantitative analysis [36]. Since 1999, numerous extensions of attack
trees have been proposed. They augment the original model with additional refinement
operators [27,25,7] or support not only offensive but also defensive behaviour [9,30,35].
An exhaustive overview of the existing attack tree-based models can be found in [31].

In most established semantics for attack trees, notably a semantics based on multi-
sets [33], there is an implicit assumption that the attacker always has the initiative. This
worst case scenario for the defender is a realistic assumption in traditional security sce-
narios, where the configuration of defensive measures is typically static. This implicit
assumption gives the attacker the advantage that, whenever there is a choice to make
between different avenues of attack, the attacker has sufficient knowledge to control
such choices.

In the interest of security, allowing the attacker to always retain the initiative is unde-
sirable. The defender may take the initiative by being aware of design decisions affect-
ing the security risk of a system; minimising the risk by pro-actively closing down more
damaging avenues of attack. Avenues can be closed down by active policy choices, for

example avoiding outdated operating systems without ASLR; or inspecting workspaces
to ensure sensitive information is not left unattended. One of several more sophisticated
ways of addressing this problem is by Moving Target Defence [26], proposed, in a fed-
eral plan, as a methodological approach to security breaking the asymmetry of the game
between the attacker and defender. Instead of the system defences being static, while
the attacker holds the advantage of being able to constantly adapt, the system defences
can also constantly change. Such constant changes can result in situations where the
attacker has insufficient knowledge to make an optimal choice. As a further example,
consider honey pots, where, by directing a potentially malicious software to a sandbox,
a network of defenders learns information about a network of attackers rather than vice
versa. Such pro-active and adaptive defence policies can be categorised as intrusion
tolerant approaches to system security [17].

As a simple policy scenario, where the initiative shifts in the favour of the defender,
consider for example the attack tree in Fig. 1 adapted from the first attack-defence tree
to appear in the literature [36]. The tree consists of goals that are disjunctively refined,
indicated by the branching of the tree. A disjunctively refined node indicates that one
of several sub-goals should be achieved in order for the attacker to succeed in its goal.
For example, to open the safe the attacker can choose one of the sub-goals “pick lock”,
“cut open safe” or “learn combo”. For now we assume the attacker has the initiative for
this decision, hence is able to try any of these three options.

open safe

pick lock cut open safe learn combo

find written combo get combo from target

threaten eavesdrop bribe

Fig. 1. Attack tree for opening a safe.

Now, in contrast to the root node, consider the node “learn combo”, which is dis-
junctively refined into “find written combo” and “get combo from target”. The question
is whether the attacker has the luxury to resolve this choice. We can say that this is a
choice, but, arguably, a choice that is external to the attacker. Suppose that managers
take a proactive decision to counter this risk, assessing that an attacker finding a combo
written by an employee is not only a serious risk but one that can be made unlikely by a

clear company policy and security inspections of the workplace. Thus an action such as
“find written combo” is an opportune event that, by policy, can be made more difficult
for the attacker to achieve. Later, new data may arrive, perhaps for a foreign branch
office, suggesting having employees susceptible to subversion is the greatest risk; a risk
that can also be dynamically countered by a pro-active policy decisions by the defender,
aware of the range of possible attacks.

We annotate the node “learn combo” with a box � to indicate that there is a choice;
but, by system design, a choice external to the attacker. The box notation has several
connotations: firstly, a box suggests the choice is treated as a black box inside which the
attacker cannot access; secondly, a box is typically used for the external choice operator
in models of concurrency [11]; thirdly, for readers familiar with modal logic, there is a
connection with the box modality in the sense that the attacker must be prepared for all
possible branches that may arise, assuming, for external choices, the attacker does not
know which branches will be made unlikely by defensive measures.

The box suggests a simple extension of the methodology for using attack trees as a
tool for security risk analysis and system design. Given an attack tree representing the
potential attacks on a system, we observe each node where a choice is made and ask the
question: “can the system be designed, e.g., by company guidelines or a moving target
defence policy, such that the attacker does not have sufficient knowledge to make an
optimal choice?”

Identifying some choices as external to the attacker, subtly changes the quantitative
analysis performed over an attack tree. For example, in the attack tree adapted from
Schneier, marking one node as external will never benefit the attacker — the damage of
an attack may be reduced and the cost to the attacker may increase. By comparing the
result of risk analysis with and without the node marked as external we can assess the
impact of concentrating resources on a policy decision. We may wish to discover, for
example, the percentage increase in cost to the attacker incurred by a policy decision.
For example, without any pro-active policy, we may assess that the cheapest attack is
to “find a written combo” at the cost of $10k outlay to the attacker. However, with a
policy avoiding the cheapest attack by which the combo can be learnt in the running
example, we may assess that if the cheapest option the attacker can choose is to cut
open the safe at the cost of $12k, then we can conclude there is a 20% increase in the
cost to the attacker. This assessment is of course dependant on data available on the
attack scenario.

The presence of external choices also demands a more refined semantics that dis-
tinguishes moves by the attacker and the attacker’s external environment. Sometimes
the environment is the defender, but external choice may model uncertainty inherent in
the environment the attacker operates. The semantics of external choices becomes par-
ticularly interesting when considering the notion of “specialisation” [25] introduced for
comparing attack trees that are not necessarily equivalent. This paper introduces several
semantics for attack trees: a minimal extension of the standard multiset semantics [33];
a novel game semantics [29,3,16]; and semantics based on linear logic [21]. Our use
of the game semantics is particularly novel since it reconnects a branch of game theory
arising from the study of logic with quantitative game theory. We find that the linear
logic semantics preserves optimal strategies.

Outline. Section 2, for clarity, begins with a minimal attack tree model with disjunctive
refinement only. The section lays down a case for a semantics with specialisation and
how specialisation exposes the need for external refinement. The semantics of external
refinement is explored from the perspectives of sets. Section 3 expands on the model in
the previous section from the perspective of game semantics and logic.

Remark on conjunctive refinement. Attack trees feature both conjunctive and disjunc-
tive refinement. However, this paper concerns only disjunctive refinement. This choice
is made for pedagogical reasons — to explore the new feature of external refinement
in a minimal setting. All semantics introduced in this paper can be extended with con-
junctive refinement, following the use of the multiplicative connectives of linear logic
in related work [25].

2 Specialisation for Attack Trees with Disjunctive Refinement

This section considers a minimal fragment of the attack tree notation in which we can
explain the subtlety between choices that an attacker makes and choices where the at-
tacker does not necessarily have the power to make decisions.

Central to this development are the notion of action refinement, the refinement of
basic actions into attack trees consisting of several actions, and specialisation [25].
Attack trees are expected to evolve as new attacks are considered, or larger attack trees
are pruned down to just the relevant actions. In such scenarios, a specialisation order
can be used to ensure that certain properties are preserved by the specialisation, e.g.,
quantitative attribute values associated with two trees are correlated in some way.

2.1 Attack trees with disjunctive refinement only

We begin with perhaps the simplest possible attack tree model — attack trees with
disjunctive refinement only. Such trees consist of basic actions representing goals of
an attacker, such as “disrupt network” or “kill node”, and nodes that are disjunctively
refined into sub-goals. For example the first tree in Fig. 2, disjunctively refines “disrupt
database”, by indicating at least one of “disrupt network” or “kill node” should be
achieved.

A central idea in the attack tree methodology is action refinement. For example,
“kill node” can be refined disjunctively to “kill master node” or “kill data node”. This
action refinement transforms the first tree in Fig. 2 to the second tree.

Perhaps the simplest semantics is to interpret each basic node as a singleton set
and disjunction using union (the labels at nodes are just helpful annotations). Note this
is semantically equivalent to the established multiset semantics [33] in this simplified
scenario where there are no conjunctive nodes. Conjunctive refinement, representing
when multiple sub-goals should all be achieved in order to achieve a goal (essentially
an attack vector) is omitted. We know how to reintroduce conjunctive refinement into
this model at a later stage, but we focus this study on choices only.

disrupt database

kill master node kill data node

disrupt database

disrupt network kill node

kill master node kill data node
disrupt database

disrupt network kill node
refine “kill node” prune “disrupt network”

Fig. 2. Three attack trees: the middle tree obtained from the tree on the left by action refinement;
the third tree on the right a specialisation of the tree in the middle.

Under this set semantics, the first two trees in Fig. 2 are interpreted simply by the
following sets.

first tree:
{
“disrupt network”, “kill node”

}
second tree:

{
“disrupt network”, “kill master node”, “kill data node”

}
Notice that the sets are different hence the trees are neither equivalent in this simple
semantics.

Now consider the third tree in Fig. 2, which is also clearly not equivalent to the
second tree in Fig. 2. However, for any interpretation of basic actions as sets those trees
are related by subset inclusion, as follows.

{“kill master node”, “kill data node”}
⊆
{
“disrupt network”, “kill master node”, “kill data node”

}
In this situation, where trees are related by subset inclusion, we say the tree with the
smaller denotation specialises the other.

Specialisation has several useful applications in the attack tree methodology. Typ-
ically an attack tree is not a fixed static specification. It evolves as domain knowledge
is added to the tree, or knowledge is pruned from the tree to focus on the relevant part
of an attack [34]. In some use cases, multiple trees can be combined to model a more
complex system. In other use cases, differences between two attack trees for the same
scenario but generated by different agents may need to be reconciled, while showing
the semantics of one or more attack trees is reflected in the combined tree. Previously
the idea of specialisation has been explicitly explored in the setting of attack trees with
sequential refinement [25].

2.2 Distinguishing disjunctive from external refinement using a box annotation

We extend attack trees by allowing disjunctive refinement to be annotated with a box.
Consider the attack tree in Fig. 3, differing from the second attack tree in Fig. 2 only
with respect to the box annotation.

The box annotation indicates that the choice between the two sub-goals, namely
“kill master node” and “kill data node”, is external to the attacker and is instead made
by the environment or an implicitly modelled defender of the system. To give a concrete
scenario, the attacker can choose between setting out to disrupt the network or kill a
node. However, we assume that the system has been designed such that the attacker
cannot reliably distinguish between master nodes and data nodes hence, in the sub-
tree “kill node”, does not have the luxury to choose. Throughout this work we assume
the limit case where the attacker must assume the worst case scenario for the attacker,
implicitly by an active defender stacking the odds against the attacker.

Notice that this scenario suggests that there is an implicit system design decision
at that point. This, we claim, can be used to model the impact of a policy decision in
the system design, such as a moving target defence strategy, explicitly built into the
configuration of the network to keep the defender guessing — breaking the asymmetry
between the attacker and defender.

To help understand the impact of annotating a node as external consider the notion
of an attribute domain [33]. An attribute domain simply determines a way of prop-
agating quantities through attack trees. For example, we might want to calculate the
maximum damage (in the running scenario, say seconds of downtime) the attacker can
induce according to an attack tree. Calculations are performed with respect to a valua-
tion mapping basic actions to values, such as the following.

“disrupt network” 7→ 20, “kill master node” 7→ 100, “kill data node” 7→ 2

If we consider the central attack tree in Fig. 2, without the box annotation, the maximum
damage, in the previous section, is simply the maximum of all values assigned to basic
actions, i.e., maximum damage 100s downtime.

The difference with the same attack tree with the box annotation, in Fig. 3, is that the
external refinement is interpreted by minimum. Recall a moving target defence strategy

disrupt database

disrupt network kill node

kill master node kill data node

Fig. 3. Attack tree with a node labelled as external.

has been explicitly implemented to make the more damaging outcome unlikely. Thus,
under the same valuation, for the same tree but with the box annotation, the maximum
damage is calculated to be max{20,min{100, 2}}, i.e. maximum damage 20s downtime.

More subtly, observe that the 20s of downtime corresponds to the situation where
the attacker decides to take the action “disrupt network”. This choice can be explained
in term of a game between two players — the attacker and its environment (sometimes,
but not always, an active defender). The attacker aims to achieve maximum damage,
while the environment aims to minimise damage. Initially the attacker has two choices,
between “disrupt network” and the sub-tree named “kill node”. However, the sub-tree
“kill node” consists of two alternatives “kill master node” and “kill data node” that
are in control of the environment. A perfect play for the environment (or defender) in
the sub-tree ‘kill node”, is to play the least damaging option. For the above example
valuation, the least damaging option is “kill data node”. Thus the optimal strategy for
the attacker is to play the action “disrupt network”, since if it plays the sub-tree “kill
node” then the defender can be assumed to take the least damaging option “kill data
node”, resulting in less damage than 20s downtime.

In the above example, the attacker has imperfect information about some moves in
the game. In particular, those moves annotated with a box. Furthermore, for any valua-
tion, the attribute domain gives the same answer as the game explanation, e.g., changing
“kill data node” to damage 300, will result in an optimal play, where the attacker selects
sub-tree “kill node” then the defender chooses “kill master node” resulting in a damage
of 100s downtime. The next sections make the underlying game semantics precise.

Note, given sufficient data, alternatively such scenarios can be modelled probabilis-
tically, where uncertainty in the environment does not exclude the worst option, only
making it less likely. This can lead to more precise results. However, we argue the ap-
proach of simply identifying external choices, is simpler, since no data on probabilities
is required. Furthermore, all data has inherent uncertainty, hence risk analysis can at
best provide ballpark figures. For example, the high level information a risk analyst is
likely to appreciate from the analysis in this section is, as follows: “the proposed mov-
ing target defence policy, can result in reducing database down time from an attack by
up to 80% (20s downtime rather than 100s)”. Such an improvement would likely sway
the security policy of an organisation.

2.3 A distributive lattice semantics covering external refinement

Perhaps the simplest semantics that we can use to make the intuition of external choice
precise is based on distributive lattices. In order to define a suitable distributive lat-
tice model of attack trees (still without conjunctive refinement), we follow a standard
construction for free finite distributive lattices, due to Birkhoff [8]. We require a func-
tion, the prime-irreducible closure π, that maps any finite non-empty set to its great-
est prime-irreducible subsets. A prime-irreducible set is simply a set W such that if
x, y ∈ W then neither x ⊆ y nor y ⊆ x. Thereby only maximal sets are recorded in the
prime-irreducible closures, for example π({{a} , {a, b}}) = {{a, b}}.

Each basic action is interpreted as a prime-irreducible set, external refinement is
interpreted as the prime-irreducible closure of the union of two sets, while disjunctive

refinement is interpreted by the prime-irreducible closure of the point-wise union of
sets of sets, where point-wise union is defined as follows:

V + W = {x ∪ y : x ∈ V, y ∈ W}

In order to discuss disjunctive attack trees, it is convenient to have the following gram-
mar.

t B a basic actions
| t O t disjunctive refinement (as in standard attack trees)
| t � t external refinement (nodes annotated with �)

Basic actions record the labels at the leaves of attack trees, such as “disrupt network”.
Note labels at nodes, when attack trees are represented graphically, are not recorded in
this grammar, since they are generally treated implicitly; although recent work has also
considered grammars where the labels at nodes are remembered during tree transfor-
mations [20].

Definition 1. The “distributive lattice semantics” is defined by the following mapping,
where ϑ is any valuation mapping basic actions to non-empty prime-irreducible sets.

Idl
ϑ (a) = ϑ(a) Idl

ϑ (t � u) = π
(
Idl
ϑ (t) ∪ Idl

ϑ (u)
)

Idl
ϑ (t O u) = π

(
Idl
ϑ (t) + Idl

ϑ (u)
)

Note it is standard in model theory to consider all interpretations of atoms, as achieved
by the considering all mapping ϑ in the above semantics. From an attack tree perspec-
tive considering all interpretations, has the effect of ensuring the semantics is robust
under all possible action refinements (replacing of basic actions by more complex at-
tack trees). This issue is less significant for attack trees with disjunctive refinement,
but becomes significant for extension of this model, e.g., where conjunctive refinement
and external refinement co-exist. Thus we adopt a good model-theoretic practices to
facilitate extensions.

In this distributive lattice model, based on certain sets of sets, the outer level set
lists the choices that the environment has, while the inner level sets list the choices
that the attacker has after the environment chose one set from the outer level set. The
distributive lattice specialisation preorder is defined as follows.

Definition 2 (distributive lattice specialisation). Given two disjunctive attack trees t
and u, t specialises u, written t � u whenever, for all valuations ϑ, and for all y ∈ Idl

ϑ
(u),

there exists x ∈ Idl
ϑ

(t) such that x ⊆ y. I.e., every set in the denotation of u covers some
set in the denotation of t.

According to the above definition the trees in Fig. 4 are related by specialisation.
The trees in this figure have the following respective denotations, under one possi-
ble valuation ϑ(“kill master node” 7→ {{master}}, ϑ(“kill data node” 7→ {{data}}, and
ϑ(“disrupt network” 7→ {{network}}. The central denotation in this chain is for the tree
in both Fig. 3 and Fig. 4.

Fig. 4(a) {{master} , {data}} � {{network,master} , {network, data}} Fig. 3
� {{network,master}} Fig. 4(b)

(a)

disrupt database

disrupt network kill master node

disrupt database

disrupt network kill node

kill master node kill data node (b)
kill node

kill master node kill data node

Fig. 4. Three attack trees related by distributive lattice specialisation: the attacker has the least
advantage in the tree (a), and the greatest advantage in tree (b). The tree in Fig. 3 lies between
these trees.

The above inequalities hold under any possible valuation ϑ mapping basic actions to
non-empty prime-irreducible sets.

Observe, under the maximum damage attribute domain and example valuation de-
fined in previous sections, the maximum damage increases from left to right according
to the specialisation order. For the trees in Fig. 4(a), Fig. 3 and Fig. 4(b), the maximum
damage is respectively 2s, 20s and 100s downtime. Furthermore, we know that for any
valuation the same inequalities will be preserved.

The above observations leads us to the following compatibility criterion:

An attribute domain is compatible with a specialisation relation whenever for
all pairs of trees related by specialisation, there is a correlation between the
values at the root of the trees, for any assignment of values to basic actions at
the leaves.

The above is a criterion, not a definition, that can be instantiated with any notion of
attack tree, specialisation and correlation. The following is a definition specific to dis-
junctive attack trees and preorders for specialisation and correlation.

Definition 3. An attribute domain for disjunctive attack treesD = (D, f , g) is given by
domain D ordered by ≤, where f and g are binary operators. The interpretation in that
domain is defined as follows, for any valuation ϑ mapping basic actions to D:

IDϑ (a) = ϑ(a) IDϑ (t O u) = f (IDϑ (t) , IDϑ (u)) IDϑ (t � u) = g(IDϑ (t) , IDϑ (u))

An attribute domain D is compatible with a specialisation �, whenever for all attack
trees t and u such that t � u, and all valuations ϑ, we have ID

ϑ
(t) ≤ ID

ϑ
(u).

A concrete example of an attribute domain compatible with the distributive lattice se-
mantics is the maximum damage attribute domain used in examples so far (N,min,max).
Further examples include attribute domains based on classical propositional logic and

de Morgan algebras (e.g. three value logic indicating low, medium and high risk). The
product of distributive lattices is a distributive lattice. Thus, multi-parameter attribute
domains [28,5,12], such as the product of the maximum damage attribute domain and an
attribute domain indicating whether an attack is possible using classical propositional
logic, are also compatible with the distributive lattice semantics.

In the next section, we observe that the distributive lattice semantics is simply a way
of representing normal form games.

3 A game semantics for disjunctive attack trees

As suggested informally, for examples presented so far, the interplay between disjunc-
tive and external refinement, respectively choices made by the attacker and the environ-
ment of the attacker, can be considered as an extensive-form game. An extensive-form
game is described as a tree of choices annotated to indicate whether the proponent
or opponent makes the choice — where the proponent and opponent are respectively
the attacker and its environment (or defender) in the setting of disjunctive attack trees.
Extensive-form games can be seen as a natural extension of the distributive lattice se-
mantics, preserving more structure about the knowledge of the attacker and defender at
various points in the game.

disrupt database

disrupt master node

disrupt network kill master node

disrupt data node

disrupt network kill data node

Fig. 5. An attack tree equivalent under the distributive lattice semantics to the tree in Fig. 3; but
strictly more generous to the attacker under two-player simulation (Definition 4).

To see how the distributive lattice semantics forgets some of the structure of an
extensive-form game consider the tree in Fig. 5, which has the following denotation,
identical to the denotation of the tree in Fig. 3: {{network,master} , {network, data}},
considered under the previously described mapping of basic actions to non-empty prime-
irreducible sets: ϑ(“kill master node” 7→ {{master}}, ϑ(“kill data node” 7→ {{data}}, and
ϑ(“disrupt network” 7→ {{network}}.

If we consider only the optimal strategy for the games, it is fine to consider the
trees in Fig. 3 and Fig. 5 to be equivalent. In the optimal strategy for the tree in Fig. 5
the defender gets to move first, and will ensure that the least damaging choice is taken

— the sub-tree labelled “disrupt data node” under the running example valuation. In
the sub-game “disrupt data node”, the attacker chooses “disrupt network” or “kill data
node”, taking the most damaging option — “disrupt network” according our running
attribute domain. This gives the same result, 20s downtime — the same answer as for
the optimal game on the tree in Fig. 3.

An explanation for why the two attack trees described are equivalent is that op-
timal strategies pick out the minimal and maximal strategies, depending on which
player holds the initiative. Minimum and maximum distribute over each other, hence
an extensive-form game can always be normalised into a game where both players si-
multaneously declare their optimal position — a normal form game. If we consider
disjunctive attack trees to be extensive-form games, then the distributive lattice seman-
tics can be regarded as capturing the normal forms of such games. In such a setting,
the main argument for permitting extensive-form games is data-structures for extensive
form game may be exponentially smaller than for normal-form games.

3.1 Sub-optimal strategies and a games semantics for disjunctive attack trees

A subtle argument for preserving the structure of play in an attack tree, based on seman-
tics, is we may desire to preserve not just the meaning of optimal strategies, but also
suboptimal strategies, where one player makes a suboptimal choice, or dually a lucky
choice. Consider the trees in Fig. 3 and Fig. 5 as extensive-form games, presented syn-
tactically by the respective terms related by the inequality below.

network O (master � data) - (network O master) � (data O network)

We can say that the tree on the left can be simulated (notation: -) by the tree on the
right as follows. If the attacker chooses “disrupt network” (abbreviated network) on the
left, “disrupt network” is still enabled for the attacker on all paths on the right. If the
attacker chooses master � data on the left, then for all paths the defender can choose in
(network O master) � (data O network), there is a corresponding path for the defender
on the left where master is enabled and another path where data is enabled.

Notice the switching from the attacker to the defender and back in the informal
explanation of the above example. This two-player simulation game can be defined by
the following coinductive definition.

Definition 4 (two-player simulation). Given a disjunctive attack tree t, the moves of
the attacker t =⇒A t′ are given by all terms t′ reachable from t by maximal sequences
of rewrites of the form t1 O t2 −→ ti, where i ∈ {1, 2} (or t =⇒A t if there is no such
transition). Dually, the moves of the defender t =⇒D t′ are given by terms t′ reachable
by maximal sequences of transitions of the form t1 � t2 −→ ti, where i ∈ {1, 2} (or
t =⇒D t if there is no such transition).

A two-player simulation R is a relation between attack trees such that, whenever
t R u the following hold:

– If t =⇒A t′ and u =⇒D u′ then there exist t′′ and u′′ such that t′ =⇒D t′′ and
u′ =⇒A u′′ and t′′ R u′′.

– If neither player can move in either tree, t and u are the same basic action.

We say a tree t is simulated by u, written t - u whenever there exists a two-player
simulation R such that t R u.

Example of two-player simulation. Consider again the running example. To verify
network O (master � data) - (network O master) � (data O network) holds, observe
the pair is contained in a two-player simulation S containing the following pairs.

network O (master � data) S (network O master) � (data O network)
master S master network S network data S data

To see that the above relation is a two-player simulation consider the four initial moves:

1. Consider when the attacker moves in the first tree to network and the defender
moves in the second tree to network O master. This pair of moves can be matched
by the move networkOmaster =⇒A network, reaching the pair network S network.

2. The case where the attacker moves to network in the first and defender moves to
data O network in the second is similar to the first case.

3. The attacker moves to master � data in the first tree and the defender moves to
network O master is the second tree. This pair of moves can be matched by transi-
tions master�data =⇒D master in the first tree and networkOmaster =⇒A master
in the second tree. Since master S master we are done.

4. The final case, where the attacker moves to master � data in the first tree and the
defender moves to network O master is the second tree, is similar to the third case.

Each pair in the simulation can be considered as a reachable pair of sub-games. In each
pair of sub-games, optimal strategies remain correlated, even if a player made a sub-
optimal choice in order to reach that sub-game. To see this, consider all sub-games, in
the relation S under any distributive attribute domain and any valuation. The value, e.g.,
maximum damage, on the left is always less than or equal to the value on the right.

Another way to understand the two-player simulation intuitively is that the attacker
plays according to the first board, while the defender plays according to the second
board. If the actual attack scenario is the first board the defender can still perform its
defences, and, symmetrically, if the actual attack scenario is the second board the at-
tacker can still perform its attack. This indicates that in the first board, the attacker may
be more restricted than in the second board, and, symmetrically, in the second board the
defender may be more restricted than in the first board.

Stated in other terms: no matter what happens, the attacker can always be at least as
effective in the attack tree on the right of a 2-player simulation relation, i.e., according
to the tree in Fig 5 in the running example, rather than the tree in Fig. 3.

A counter-model for a two-player simulation. In contrast, there is no two-player sim-
ulation in the opposite direction. That is (network O master) � (data O network) is not
simulated by network O (master � data). To see why, observe initially the attacker can-
not move in the first tree, nor can the defender move in the second tree. This identity
initial move can be followed up by four possible moves to chose from.

1. In this first case, masterOnetwork is not simulated by network, since if the attacker
makes the move masterOnetwork =⇒A master, this cannot be matched by network.

2. In the second case, for reasons similar to the first case, data O network is not simu-
lated by network.

3. In the third case, network Omaster is not simulated by master � data. To see why,
observe that if the attacker makes move network O master =⇒A master and the
defender makes move master � data =⇒D data, clearly master and data are not
equal in all models.

4. In the fourth case, for reasons similar to the third case, network O data is not simu-
lated by master � data.

The above reasoning is independent of any valuation in a particular attribute domain.
The above reasoning is satisfied by any semantics compatible, according to compatibil-
ity criterion, with respect to the specialisation relation defined by two-player simulation.
However, we can give a concrete counter-model explained below.

If we consider a multi-parameter attribute domain, for example the product of max-
imum damage and whether an attack is possible, we can see that in each of the four
cases above there is a valuation where the attacker has the initiative on the left but
cannot maintain the initiative on the right. In concrete terms, consider the following
valuation:

network 7→ (5, false), master 7→ (20, false) data 7→ (5, true)

We can now calculate the optimal strategy using this distributive attribute domain and
valuation in each of the four cases above. We get the following inequalities for the
respective cases.

1. For master O network and network, we have (20, false) > (5, false).
2. For data O network and network, we have (5, true) > (5, false).
3. For network O master and master � data we have (20, false) , (5, true).
4. For network O data and master � data we have (5, true) , (20, false).

Thus in none of the pairs of sub-games enumerated, is it the case that the valuation on
the left is less than or equal to the valuation on the right. Thus the correlation between
the optimal strategies is broken in the sub-games.

An example specialising disjunctive refinement to external refinement. As another ex-
ample, observe the tree network O (master � data), from Fig. 3, is simulated by tree
networkOmasterOdata where external refinement is relaxed to disjunctive refinement,
i.e., the middle tree in Fig. 2.

Initially, the attacker moves in the first tree to reach either network or master�data.
In in response to the former move, network can be matched by a move by the attacker
on the second tree to network. The later move can be matched by the defender making
move master � data =⇒D master in the first tree and the attacker making the move
master � data =⇒A master in the second tree. Thus the relation T , defined as follows,
is a two-player simulation.

network O (master � data) T network O master O data
network T network master T master

Next we provide a proof system where implication coincides with simulation.

3.2 Specialisation expressed using additive linear logic

We provide a brief introduction to the additive fragment of linear logic [21], which is
used to logically characterise 2-player simulation on disjunctive attack trees. A proof
system for additive linear logic, ALL, is given in Figure 6. Rules are expressed in the
sequent calculus, where a sequent, of the form ` ∆, where ∆ is a multiset of propositions
(thus permitting comma separated formulae to exchange position).

linear negation, indicated by an overline, is a synthetic operator distinct from classi-
cal negation. Additive disjunction, P⊕Q (called “plus”), has a De Morgan dual additive
conjunction, P & Q (called “with”), such that P & Q = P ⊕ Q and P ⊕ Q = P & Q. All
negations can be pushed to the atomic propositions a where a = a.

` a, a
axiom

` Pi, ∆

` P1 ⊕ P2, ∆
⊕, i ∈ {1, 2}

` P, ∆ ` Q, ∆
` P & Q, ∆ &

Fig. 6. A sequent calculus for Additive Linear Logic.

If we desire to prove that P implies Q, written P (Q, we search for a proof of
the sequent ` P,Q. For example, the axiom states that a basic action specialises itself.
Also, the following is a proof of showing that with (&) distributes in one direction over
plus (⊕), i.e. a ⊕ (b & c)((a ⊕ b) & (a ⊕ c).

axiom
` a, a

⊕
` a, a ⊕ b

axiom
` a, a

⊕
` a, a ⊕ c

&
` a, (a ⊕ b) & (a ⊕ c)

axiom
` b, b

⊕
` b, a ⊕ b

⊕
` b ⊕ c, a ⊕ b

axiom
` c, c

⊕
` c, a ⊕ c

⊕
` b ⊕ c, a ⊕ c

&
` b ⊕ c, (a ⊕ b) & (a ⊕ c)

&
` a & (b ⊕ c), (a ⊕ b) & (a ⊕ c)

The linear implication (a & b)⊕ (a & c)(a & (b⊕ c) also holds by a similar proof.
However, take care that, unlike classical logic which defines a distributive lattice, the
converse implications do not hold. Thus linear logic preserves more structure regarding
how operators are nested, as required to preserve the sub-games of an extensive-form
game explained in the previous section.

We now define a linear logic semantics by using the following embedding of dis-
junctive attack trees as propositions in additive linear logic.

~t O u� = ~t� ⊕ ~u� ~t � u� = ~t�& ~u� ~a� = a

In this semantics, specialisation is defined by the provable linear implications. For ex-
ample, by the proof above we have the following specialisation.

~network O (master � data)�(~(network O master) � (data O network)�

Notice that the above example was already established by two-player simulation S in
the previous section.

As another example, we have the following implication.

~network O (master � data)�(~network O master O data�

This implication, demonstrating a specialisation between attack trees, is verified by the
the following proof in the sequent calculus.

` network, network
axiom

` network, network ⊕ (master ⊕ data)
⊕

` master,master
axiom

` master,master ⊕ data
⊕

` master ⊕ data,master ⊕ data
⊕

` master ⊕ data, network ⊕ (master ⊕ data)
⊕

` master ⊕ data, network ⊕ (master ⊕ data)
⊕

` network &
(
master ⊕ data

)
, network ⊕ (master ⊕ data)

&

The above proof also corresponds to a two-player simulation presented previously.
Logically speaking, the following theorem is a soundness and completeness result,

checking, for any disjunctive attack tree, there is a correspondence between provable
implications and two-player simulations.

Theorem 1. Given disjunctive attack trees t and u, ` ~t�(~u� if and only if t - u.

The above theorem follows from the soundness and completeness of an established
game semantics for ALL [16]. Two-player simulation is simply a reformulation of ALL
games directly on attack trees. The proof involves a more refined but equivalent multi-
focussed [4,13] proof system for ALL, from which strategies are extracted.

Recall that two-player simulation preserves optimal strategies in all sub-games. The
following proposition follows, since the distributive lattice semantics preserves the op-
timal strategy for the main game tree, which is obviously also a sub-game.

Proposition 1. Given disjunctive attack trees t and u, if t - u then t � u.

As demonstrated previously using Fig. 3 and Fig. 5, the distributive semantics does not
preserve sub-optimal strategies, hence the converse does not hold.

4 Related and future work

We highlight related work in two directions, both connecting games and attack trees.

Related work on multiplicative-additive games and game semantics. Connections be-
tween dialogue games and logic are as old as the study of logic itself. For linear logic,
the pioneering work on games semantics, due to Blass [10], suffered from composi-
tionality issues that were fixed for the multiplicative fragment [1]. For MALL, the first
satisfactory model proposed is based on a “truly concurrent” game semantics [3] where
both players may simultaneously be active in different parts of the arena in which the

game is played. Game models for an “intuitionistic” restriction of MALL have been de-
veloped [32] based on the idea of focussing. Focussing [4], exploits the fact that during
proof search, half the rules are “invertible” meaning there is no need to backtrack once
a decision is made. The two-player simulations in this work are based on a “neutral”
approach to game semantics [16] for MALL based on multi-focussing [13], which dis-
posed of the “intuitionistic” restriction. We have recreated this game semantics directly
over attack trees, leading to a more direct but, in the case of conjunctive refinement, less
symmetric definition.

Previous work on specialisation [25] of attack trees with sequential refinement [27]
employs an extension of linear logic, called MAV [24], modelling sequentiality using
a non-commutative operator. Since MAV extends MALL, external refinement and se-
quential refinement can co-exists in MAV. Defining a game semantics for MAV however
remains an open problem. Game semantics, distinct from MALL games, have been ap-
plied to other security problems [2,15,18]

Related work on game theory applied to attack trees. Models capturing a game-strategic
interaction between the attacker and the defender in attack trees have been noted pre-
viously. In [29], for instance, a relation between the propositional semantics of attack-
defence trees and two player, binary, zero-sum games has been established. It shows
that the two models are equivalent, however this result only applies to the problem
of the satisfiability of a security scenario. In [23], Hermanns et al. lift the zero-sum
assumption and consider three-valued logic (undecided, won by the attacker, won by
the defender) to analyse the security scenarios using attack-defence diagrams. Attack-
defence diagrams represent a game between an attacker and a defender competing with
each other to swing the game from ‘undecided’ to ‘won’ by one of them. These dia-
grams however, have much richer structure than ADTrees – they are directed graphs
handling cyclic behaviours, and capture quantitative information as well as dependen-
cies between actions.

Several other game-based approaches to analysing security scenarios modelled by
attack trees. In [6], ADTrees are transformed into stochastic two-player game and prob-
abilistic model checking techniques are used to answer questions on the probability of
successful attacks, with respect to various constraints, such as time. Model checking,
and more precisely timed automata and the Uppaal tool, has also been used for the
analysis of ADTrees [19]. The particularity of this framework is that it assumes that
the defender acts only once. At the very beginning of the scenario, he selects a set of
possible countermeasures to be implemented and the objective of the analysis is to find
the most optimal strategy (from the quantitative perspective) of the attacker in this fixed
setting. Yet another approach based on two-player Stackelberg stochastic games has
also been proposed [37]. Their analysis is based on converting attack-response tree to
security games, in order to evaluate the effectiveness of intrusion tolerance engines.

Future work will illustrate the subtitles of models combining external refinement
and conjunctive refinement. Future work also includes reconciling the semantics in the
current paper with the above probabilistic approaches to games, with the objective of
defining a notion of specialisation that preserves “mixed” strategies and probabilistic
attribute domains. Probabilities can also be approached from the perspective of logic
and game semantics [14].

5 Conclusion

The contribution of this paper is a minimal methodology for analysing the impact of
a pro-active security policy where some choices are external to the attacker. External
choices are modelled by annotating some disjunctive refinements in an attack tree with
a box �. The methodology is made precise by developing two semantics, formalising
the key observation that breaking the asymmetry in attack scenarios exposes a game
between moves by an attacker and its environment.

This paper highlights advantages particular to the semantics defined by an em-
bedding in MALL. The semantics based on ALL, Figures 6, admits a decidable spe-
cialisation preorder for comparing trees not necessarily equivalent, with O(mn) time-
complexity [22], where m and n are the sizes of the two trees being compared. The
specialisation preorder can be characterised (Theorem 1) by a game semantics (Defini-
tion 4) unfolding the extensive-form game underlying an attack tree, such that all strate-
gies are preserved. Specialisation respects (Propositions 1) a more obvious semantics
based on distributive lattices (Definition 2), preserving optimal strategies only. Recall
that, without a semantics, attack trees can be interpreted differently by tools, possibly
unpredictably affecting the quantitative analysis of attacks.

Acknowledgment

Horne and Tiu receive support from MOE Tier 2 grant MOE2014-T2-2-076 and the Na-
tional Research Foundation Singapore under its National Cybersecurity R&D Program
(Award No. NRF2014NCR-NCR001-30). Mauw received funding from the Fonds Na-
tional de la Recherche Luxembourg, grant C11/IS/1183245 (ADT2P), and the European
Commissions Seventh Framework Programme (FP7/2007-2013) under grant agreement
number 318003 (TREsPASS).

References

1. Samson Abramsky and Radha Jagadeesan. Games and full completeness for multiplicative
linear logic. Journal of Symbolic Logic, 59(2):543–574, 1994. doi:10.2307/2275407.

2. Samson Abramsky and Radha Jagadeesan. Game semantics for access control. In Pro-
ceedings of the 25th Conference on Mathematical Foundations of Programming Semantics
(MFPS 2009), volume 249 of Electronic Notes in Theoretical Computer Science, pages 135–
156, 2009. doi:10.1016/j.entcs.2009.07.088.

3. Samson Abramsky and Paul-André Melliès. Concurrent games and full completeness. In
14th Annual IEEE Symposium on Logic in Computer Science LICS, Trento, Italy, July 2-5,
1999, pages 431–442. IEEE Computer Society, 1999. doi:10.1109/LICS.1999.782638.

4. Jean-Marc Andreoli. Logic programming with focusing proofs in linear logic. Journal of
Logic and Computation, 2(3):297–347, 1992. doi:10.1093/logcom/2.3.297.

5. Zaruhi Aslanyan and Flemming Nielson. Pareto efficient solutions of attack-defence trees.
In Riccardo Focardi and Andrew Myers, editors, Principles of Security and Trust, pages
95–114. Springer Berlin Heidelberg, 2015. doi:10.1007/978-3-662-46666-7_6.

6. Zaruhi Aslanyan, Flemming Nielson, and David Parker. Quantitative verification and synthe-
sis of attack-defence scenarios. In 2016 IEEE 29th Computer Security Foundations Sympo-
sium (CSF), pages 105–119. IEEE Computer Society, 2016. doi:10.1109/CSF.2016.15.

http://dx.doi.org/10.2307/2275407
http://dx.doi.org/10.1016/j.entcs.2009.07.088
http://dx.doi.org/10.1109/LICS.1999.782638
http://dx.doi.org/10.1093/logcom/2.3.297
http://dx.doi.org/10.1007/978-3-662-46666-7_6
http://dx.doi.org/10.1109/CSF.2016.15

7. Maxime Audinot, Sophie Pinchinat, and Barbara Kordy. Is my attack tree correct? In
Simon N. Foley, Dieter Gollmann, and Einar Snekkenes, editors, Computer Security –
ESORICS 2017, pages 83–102. Springer International Publishing, 2017. doi:10.1007/
978-3-319-66402-6_7.

8. Garrett Birkhoff. Rings of sets. Duke Mathematical Journal, 3(3):443–454, 1937. doi:
10.1215/S0012-7094-37-00334-X.

9. Stefano Bistarelli, Fabio Fioravanti, and Pamela Peretti. Defense trees for economic eval-
uation of security investments. In First International Conference on Availability, Reli-
ability and Security (ARES’06), pages 416–423. IEEE Computer Society, 2006. doi:
10.1109/ARES.2006.46.

10. Andreas Blass. A game semantics for linear logic. Annals of Pure and Applied Logic,
56(1):183–220, 1992. doi:https://doi.org/10.1016/0168-0072(92)90073-9.

11. S. D. Brookes, C. A. R. Hoare, and A. W. Roscoe. A theory of communicating sequential
processes. Journal of the ACM, 31(3):560–599, 1984. doi:10.1145/828.833.

12. Ahto Buldas, Peeter Laud, Jaan Priisalu, Märt Saarepera, and Jan Willemson. Rational choice
of security measures via multi-parameter attack trees. In Javier Lopez, editor, Critical Infor-
mation Infrastructures Security: First International Workshop, CRITIS 2006, Samos, Greece,
August 31–September 1, pages 235–248, 2006. doi:10.1007/11962977_19.

13. Kaustuv Chaudhuri, Dale Miller, and Alexis Saurin. Canonical sequent proofs via multi-
focusing. In Giorgio Ausiello, Juhani Karhumäki, Giancarlo Mauri, and C.-H. Luke
Ong, editors, TCS, volume 273 of IFIP, pages 383–396. Springer, 2008. doi:10.1007/
978-0-387-09680-3_26.

14. Vincent Danos and Russell S Harmer. Probabilistic game semantics. ACM Transactions on
Computational Logic (TOCL), 3(3):359–382, 2002. doi:10.1145/507382.507385.

15. Mourad Debbabi and Mohamed Saleh. Game semantics model for security protocols. In
Kung-Kiu Lau and Richard Banach, editors, Formal Methods and Software Engineering: 7th
International Conference on Formal Engineering Methods, ICFEM 2005, Manchester, UK,
November 1-4, 2005. Proceedings, pages 125–140. 2005. doi:10.1007/11576280_10.

16. Olivier Delande, Dale Miller, and Alexis Saurin. Proof and refutation in MALL as a game.
Annals of Pure and Applied Logic, 161(5):654–672, 2010. doi:10.1016/j.apal.2009.
07.017.

17. Y. Deswarte, L. Blain, and J. C. Fabre. Intrusion tolerance in distributed computing sys-
tems. In Proceedings. 1991 IEEE Computer Society Symposium on Research in Security and
Privacy, pages 110–121, May 1991. doi:10.1109/RISP.1991.130780.

18. Aleksandar S. Dimovski. Ensuring secure non-interference of programs by game seman-
tics. In Sjouke Mauw and Christian Damsgaard Jensen, editors, Security and Trust Man-
agement: 10th International Workshop, STM 2014, Wroclaw, Poland, September 10-11,
2014. Proceedings, pages 81–96. Springer International Publishing, 2014. doi:10.1007/
978-3-319-11851-2_6.

19. Olga Gadyatskaya, René Rydhof Hansen, Kim Guldstrand Larsen, Axel Legay, Mads Chr.
Olesen, and Danny Bøgsted Poulsen. Modelling attack-defense trees using timed au-
tomata. In Martin Fränzle and Nicolas Markey, editors, Formal Modeling and Analysis
of Timed Systems, pages 35–50. Springer International Publishing, 2016. doi:10.1007/
978-3-319-44878-7_3.

20. Olga Gadyatskaya, Ravi Jhawar, Sjouke Mauw, Rolando Trujillo-Rasua, and Tim A. C.
Willemse. Refinement-aware generation of attack trees. In Giovanni Livraga and Chris J.
Mitchell, editors, STM, volume 10547 of Lecture Notes in Computer Science, pages 164–
179. Springer, 2017. doi:10.1007/978-3-319-68063-7_11.

21. Jean-Yves Girard. Linear logic. Theoretical computer science, 50(1):1–101, 1987. doi:
10.1016/0304-3975(87)90045-4.

http://dx.doi.org/10.1007/978-3-319-66402-6_7
http://dx.doi.org/10.1007/978-3-319-66402-6_7
http://dx.doi.org/10.1215/S0012-7094-37-00334-X
http://dx.doi.org/10.1215/S0012-7094-37-00334-X
http://dx.doi.org/10.1109/ARES.2006.46
http://dx.doi.org/10.1109/ARES.2006.46
http://dx.doi.org/https://doi.org/10.1016/0168-0072(92)90073-9
http://dx.doi.org/10.1145/828.833
http://dx.doi.org/10.1007/11962977_19
http://dx.doi.org/10.1007/978-0-387-09680-3_26
http://dx.doi.org/10.1007/978-0-387-09680-3_26
http://dx.doi.org/10.1145/507382.507385
http://dx.doi.org/10.1007/11576280_10
http://dx.doi.org/10.1016/j.apal.2009.07.017
http://dx.doi.org/10.1016/j.apal.2009.07.017
http://dx.doi.org/10.1109/RISP.1991.130780
http://dx.doi.org/10.1007/978-3-319-11851-2_6
http://dx.doi.org/10.1007/978-3-319-11851-2_6
http://dx.doi.org/10.1007/978-3-319-44878-7_3
http://dx.doi.org/10.1007/978-3-319-44878-7_3
http://dx.doi.org/10.1007/978-3-319-68063-7_11
http://dx.doi.org/10.1016/0304-3975(87)90045-4
http://dx.doi.org/10.1016/0304-3975(87)90045-4

22. Willem Heijltjes and Dominic J. D. Hughes. Complexity bounds for sum-product logic
via additive proof nets and petri nets. In 30th Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS 2015, Kyoto, Japan, July 6-10, 2015, pages 80–91. IEEE Computer
Society, 2015. doi:10.1109/LICS.2015.18.

23. Holger Hermanns, Julia Krämer, Jan Krčál, and Mariëlle Stoelinga. The value of
attack-defence diagrams. In Frank Piessens and Luca Viganò, editors, Principles of Se-
curity and Trust, pages 163–185. Springer Berlin Heidelberg, 2016. doi:10.1007/

978-3-662-49635-0_9.
24. Ross Horne. The consistency and complexity of multiplicative additive system virtual. Sci-

entific Annals of Computer Science, 25(2):245, 2015. doi:10.7561/SACS.2015.2.245.
25. Ross Horne, Sjouke Mauw, and Alwen Tiu. Semantics for specialising attack trees

based on linear logic. Fundamenta Informaticae, 153(1-2):57–86, 2017. doi:10.3233/
FI-2017-1531.

26. Sushil Jajodia, Anup K. Ghosh, Vipin Swarup, Cliff Wang, and X. Sean Wang. Moving
target defense: creating asymmetric uncertainty for cyber threats, volume 54. Springer,
2011. doi:10.1007/978-1-4614-0977-9.

27. Ravi Jhawar, Barbara Kordy, Sjouke Mauw, Saša Radomirović, and Rolando Trujillo-Rasua.
Attack trees with sequential conjunction. In H. Federrath and D. Gollmann, editors, Proc.
30th IFIP TC-11 International Information Security and Privacy Conference (IFIPSec’15),
volume 455, pages 339–353, 2015. doi:10.1007/978-3-319-18467-8_23.

28. R. Jiang, J. Luo, and X. Wang. An attack tree based risk assessment for location privacy
in wireless sensor networks. In WiCOM, pages 1–4, 2012. doi:10.1109/WiCOM.2012.
6478402.

29. Barbara Kordy, Sjouke Mauw, Matthijs Melissen, and Patrick Schweitzer. Attack–defense
trees and two-player binary zero-sum extensive form games are equivalent. In Deci-
sion and Game Theory for Security, pages 245–256. Springer, 2010. doi:10.1007/

978-3-642-17197-0_17.
30. Barbara Kordy, Sjouke Mauw, Saša Radomirović, and Patrick Schweitzer. Attack–defense

trees. Journal of Logic and Computation, 24(1):55–87, 2014. doi:10.1093/logcom/
exs029.

31. Barbara Kordy, Ludovic Piètre-Cambacédès, and Patrick Schweitzer. Dag-based attack and
defense modeling: Don’t miss the forest for the attack trees. C. S. Review, 13-14:1–38, 2014.

32. Olivier Laurent. Polarized games. Ann. Pure Appl. Logic, 130(1-3):79–123, 2004. doi:
10.1016/j.apal.2004.04.006.

33. Sjouke Mauw and Martijn Oostdijk. Foundations of attack trees. In Dongho Won and Se-
ungjoo Kim, editors, Proc. 8th International Conference on Information Security and Cryp-
tology (ICISC’05), volume 3935 of Lecture Notes in Computer Science, pages 186–198,
2006. doi:10.1007/11734727_17.

34. Indrajit Ray and Nayot Poolsapassit. Using attack trees to identify malicious attacks from au-
thorized insiders. In Sabrina de Capitani di Vimercati, Paul Syverson, and Dieter Gollmann,
editors, Computer Security – ESORICS 2005: 10th European Symposium on Research in
Computer Security, Milan, Italy, September 12-14, 2005. Proceedings, pages 231–246. 2005.
doi:10.1007/11555827_14.

35. Arpan Roy, Dong Seong Kim, and Kishor S. Trivedi. Attack countermeasure trees: towards
unifying the constructs of attack and defense trees. Security and Communication Networks,
5(8):929–943, 2012. doi:10.1002/sec.299.

36. Bruce Schneier. Attack trees. Dr. Dobb’s journal, 24(12):21–29, 1999.
37. S. A. Zonouz, H. Khurana, W. H. Sanders, and T. M. Yardley. Rre: A game-theoretic intru-

sion response and recovery engine. IEEE Transactions on Parallel and Distributed Systems,
25(2):395–406, Feb 2014. doi:10.1109/TPDS.2013.211.

http://dx.doi.org/10.1109/LICS.2015.18
http://dx.doi.org/10.1007/978-3-662-49635-0_9
http://dx.doi.org/10.1007/978-3-662-49635-0_9
http://dx.doi.org/10.7561/SACS.2015.2.245
http://dx.doi.org/10.3233/FI-2017-1531
http://dx.doi.org/10.3233/FI-2017-1531
http://dx.doi.org/10.1007/978-1-4614-0977-9
http://dx.doi.org/10.1007/978-3-319-18467-8_23
http://dx.doi.org/10.1109/WiCOM.2012.6478402
http://dx.doi.org/10.1109/WiCOM.2012.6478402
http://dx.doi.org/10.1007/978-3-642-17197-0_17
http://dx.doi.org/10.1007/978-3-642-17197-0_17
http://dx.doi.org/10.1093/logcom/exs029
http://dx.doi.org/10.1093/logcom/exs029
http://dx.doi.org/10.1016/j.apal.2004.04.006
http://dx.doi.org/10.1016/j.apal.2004.04.006
http://dx.doi.org/10.1007/11734727_17
http://dx.doi.org/10.1007/11555827_14
http://dx.doi.org/10.1002/sec.299
http://dx.doi.org/10.1109/TPDS.2013.211

	 The Attacker Does not Always Hold the Initiative: Attack Trees with External Refinement

