
Designing, Verifying and Monitoring Protocols

inspired by Scribble

Versions presented:
Luxembourg-Singapore Workshop on Security and Privacy — 2 March 2016

InfoLab21, Lancaster University, United Kingdom — 17 November 2015
Queen Mary University of London, United Kingdom — 11 November 2015

PSI: 10th Ershov Informatics Conference, Kazan, Russia — 25–27 August 2015

Ross Horne

School of Computer Engineering, Nanyang Technological University, Singapore

2 March 2016



Sessions in Distributed Systems

Client driven two phase commit (2PC) as a sequence diagram.



Sessions in Distributed Systems

Client driven two phase commit (2PC) as a global session type (based on Scribble1).

{ par
p begin (Payload) from Client to Participant

and
l begin (Payload) from Client to Leader

} ;

prepare (Timestamp) from Participant to Leader ;

{ par
c commit (Timestamp) from Leader to Client

and
p commit (Timestamp) from Leader to Participant

}

1Kohei Honda, Aybek Mukhamedov, Gary Brown, Tzu-Chun Chen, and Nobuko Yoshida. Scribbling interactions
with a formal foundation. In Distributed Computing and Internet Technology, pages 5575. Springer, 2011.



Sessions in Distributed Systems

Local session types for roles Client, Participant and Leader (based on Scribble).

Client: { par ∼p begin (Payload) to Participant
and ∼l begin (Payload) to Leader

} ;
c commit (Timestamp) from Leader

Leader: l begin (Payload) from Client ;
prepare (Timestamp) from Participant ;
{ par ∼p commit (Timestamp) to Participant

and ∼c commit (Timestamp) to Client
}

Participant: p begin (Payload) from Client ;
∼prepare (Timestamp) to Leader ;
p commit (Timestamp) from Leader



A Semantics for Multi-party Session Types

I How do we know that the projection is correct?

I How do we know when a protocol of one type
can do everything that a protocol of another type
can do?

I How can we determine when a collection of local
types are compatible?

We need a semantics!



Sessions in Distributed Systems

Local session types for roles Client, Participant and Leader.

Client: { par ∼p begin (Payload) to Participant
and ∼l begin (Payload) to Leader

} ;
c commit (Timestamp) from Leader

Leader: l begin (Payload) from Client ;
prepare (Timestamp) from Participant ;
{ par ∼p commit (Timestamp) to Participant

and ∼c commit (Timestamp) to Client
}

Participant: p begin (Payload) from Client ;
∼prepare (Timestamp) to Leader ;
p commit (Timestamp) from Leader



Multi-party Compatibility

par

{ par ∼p begin (Payload) to Participant
and ∼l begin (Payload) to Leader

} ;
c commit (Timestamp) from Leader

and

l begin (Payload) from Client ;
prepare (Timestamp) from Participant ;
{ par ∼p commit (Timestamp) to Participant

and ∼c commit (Timestamp) to Client
}

and

p begin (Payload) from Client ;
∼prepare (Timestamp) to Leader ;
p commit (Timestamp) from Leader



Multi-party Compatibility

{ par ∼p begin (Payload) to Participant
and p begin (Payload) from Client

and ∼l begin (Payload) to Leader
and l begin (Payload) from Client

} ;
{ par ∼prepare (Timestamp) to Leader

and prepare (Timestamp) from Participant
} ;
{ par ∼p commit (Timestamp) to Participant

and p commit (Timestamp) from Leader

and ∼c commit (Timestamp) to Client
and c commit (Timestamp) from Leader

}



Multi-party Compatibility

{ }



A Semantics for Session Types in the Calculus of Structures

atomic interaction

par ∼A and B −→ {} only if A is a subsort of B

seq

par { T ; U } and { V ; W } −→ { par T and V } ; { par U and W }

switch

par { sync T and U } and V −→ sync T and { par U and V }

left choice

T or U −→ T

right choice

T or U −→ U

tidy

{}& {} −→ {}

external choice

par T and { U & V } −→ { par T and U }& { par T and V }

medial

{ T ; U }& { V ; W } −→ { T & V } ; { U & W }

context closure congruence

C{ T } −→ C{ U } only if T −→ U T −→ U only if T ≡ U

(T , ; , {}) is a monoid and (T , par , {}) and (T , sync, {}) are commutative monoids.



Proof and Multi-party Compatibility

Definition (Proof)
A sequence of rewrites that ends with the unit ({ }) is a proof. 2

Definition (Multi-party compatibility)
If the parallel composition of all roles (and channels) is provable then the local
protocols are multi-party compatible. 3 4

Proposition
The multiset of projections from any global protocol to it’s local protocols for roles
(and channels) is multi-party compatible.

2Alessio Guglielmi. A system of interaction and structure. ACM ToCL, 8, 2007.
3Kohei Honda. Types for dyadic interaction. In CONCUR93, pages 509-523, 1993.
4Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types. ACM SIGPLAN

Notices, 43(1):273284, 2008.



Subtyping

Which protocol is a subtype of the other protocol?

2PC : 2PC′ :

I.e., can one protocol do everything that another protocol can do in every context?



Check for Subtyping

Definition
A local type T is a subtype of local type U, written T ≤ U, if and only if
par ∼T and U is provable.

Firstly apply De Morgan properties to find the complement of Leader.

Leader : l begin (Payload) from Client ;
prepare (Timestamp) from Participant ;
{

par ∼p commit (Timestamp) to Participant
and ∼c commit (Timestamp) to Client

}

∼Leader : ∼l begin (Payload) from Client ;
∼prepare (Timestamp) from Participant ;
{

sync p commit (Timestamp) to Participant
and c commit (Timestamp) to Client

}



Check for Subtyping

Definition
A local type T is a subtype of local type U, written T ≤ U, if and only if
par ∼T and U is provable.

par ∼l begin (Payload) from Client ;
∼prepare (Timestamp) from Participant ;
{

sync p commit (Timestamp) to Participant
and c commit (Timestamp) to Client

}

and {
par prepare (Timestamp) from Participant
and l begin (Payload) from Client

} ;
{

par ∼p commit (Timestamp) to Participant
and ∼c commit (Timestamp) to Client

}

The above is provable, hence Leader ≤ Leader′. Hence Leader′ can do everything
Leader can do in any context.

For global protocols apply subtyping point-wise, hence 2PC ≤ 2PC′.



Example 2PC with the option for the participant to abort.

Client′′ :

{ par ∼p begin (Payload) to Participant
and ∼l begin (Payload) to Leader

} ;
{ commit (Timestamp) from Leader

or

c abort (Error) from Leader
}

Participant′′ :

p begin (Payload) from Client ;
{ { ∼prepare (Timestamp) to Leader ;

p commit (Timestamp) from Leader
}
&
∼p abort (Error) to Leader

}

Leader′′ : l begin (Payload) from Client;
{ { prepare (Timestamp) from Participant ;

{ par ∼p commit (Timestamp) to Participant
and ∼c commit (Timestamp) to Client

}
} or {
p abort (Error) from Participant ;
∼c abort (Error) to Client
}

}

Due to internal choice Leader ≤ Leader′′ and Client ≤ Client′′.
However, due to external choice Participant′′ ≤ Participant.



Coherence

Definition (Coherence)
A multiset of local types (Ti )i∈I , where I is a set of roles and channels, is coherent
(with respect to G) if there exists a global type G such that for all i ∈ I , G �i≤ Ti .

Leader′′, Participant′′ and Client′′ (plus channels) are coherent with respect to 2PC′′:

par p begin (Payload) from Client to Participant
and l begin (Payload) from Client to Leader ;

choice at Participant {
prepare (Timestamp) from Participant to Leader ;
par c commit (Timestamp) from Leader to Client
and p commit (Timestamp) from Leader to Participant

} or {
p abort (Error) from Participant to Leader ;
c abort (Error) from Leader to Client

}



Coherence



Interoperability: the Sync Operator

I The Digital Ocean API can create instances in separate zones using one messages.

I The Google Compute Engine API requires a separate message for each zone.

The protocol below is part of a mediator between the APIs of the two Cloud providers.

sync post (JSON) from Client
and { par post1 (JSON) to Server

and post2 (JSON) to Server } ;

{ { sync alert (Error) from Server
and anything

and alert (Error) to Client }
or

{ sync response1 (JSON) from Server
and response2 (JSON) from Server
and response (JSON) to Client }

}

The sync operator is used to synchronise inputs from the servers.



Interoperability: the Sync Operator
How do I know the mediator protocol is correct?

Digital Ocean Client : ∼post (JSON) to Server ;
{ response (JSON) from Mediator

or

alert (Error) from Mediator
}

Mediator : sync post (JSON) from Client
and { par ∼post1 (JSON) to Server

and ∼post2 (JSON) to Server } ;

{ { sync alert (Error) from Server
and anything

and ∼alert (Error) to Client }
or

{ sync response1 (JSON) from Server
and response2 (JSON) from Server
and ∼response (JSON) to Client }

}

2× Google Compute Server : post (JSON) from Mediator ;
{ ∼response (JSON) to Mediator

&
∼alert (Error) to Mediator

}



Subsorting

The subtyping relation agrees with standard subtyping for I/O types. Assume the
following subsort relation holds:

nat ≤ int

The following hold:

I ∼c (int) to P ≤ ∼c (nat) to P (contravarience).

We can send something more specific (nat) when something more general (int) is
expected.

I c (nat) from P ≤ c (int) from P (covarience)

We can be ready to receive something more general (int), when something more
specific (nat) arrives.

Any preorder, e.g. subtyping for XML Schema, can be used for subsorting.



Properties of Subtyping: Cut Elimination

Theorem (Cut Elimination)
If C{ sync T and ∼T } is provable, then C{ { } } is provable.

[snip: 70 pages of proof] 5

Corollary (Transitivity)
Subtyping is transitive, i.e. if T ≤ U and U ≤ V , then T ≤ V .

Corollary
Any coherent multiset of local types, is multiparty compatible.

Theorem (Feasibility)
Deciding the provability of a local type is a PSPACE-complete problem.

5Ross Horne. The consistency and complexity of multiplicative additive system virtual. Scientific Annals of
Computer Science, 25(2):245-316, 2015.



Applications to Security and Future Collaboration

I Monitoring: Runtime monitors generated from local session types can be used to
detect when a participant violates permitted protocols. Scenarios include:

I distributed systems spanning organisation boundaries, such as a distributed database
with replicas in multiple Cloud providers.

I virtualization, where virtual machines are leased for a particular purpose only.

I microvirtualization, where untrusted software is executed safely in an isolated process.

I Type checking: Security protocols themselves can be specified using session
types. For example, an implementation of a client in an OAuth protocol can be
checked against the local type for clients to ensure conformance.

I Verification: Dependently typed extensions are sufficiently powerful to be used to
prove the correctness of security protocols themselves. Attacks can be discovered
and the absence of certain attacks can be certified.



Example of Session Types for OAuth: Globally

OAuth protocol as a sequence diagram.



Example of Session Types for OAuth: Locally

App :
∼initiate (app ID, scope) to Server ;
{} or {
authorisation code (code) from Server ;
∼exchange (app ID, secret, code) to Server ;
{} or {
access token (token) from Server ;
∼request (token) to Resource ;
response (data) from Resource
}
}

Resource :
{} or {
request (token) from App ;
∼response (data) to App
}

Server :
initiate (app ID, scope) from App ;
∼login page (app ID, scope) to Owner ;
{} or {
authenticate (name, password) from Owner ;
{} & {
∼authorisation code (code) to App ;
exchange (app ID, secret, code) from App ;
{} & {
∼access token (token) to App
}
}
}

Owner :
login page (app ID, scope) from Server ;
{} & {
∼authenticate (name,password) to Server
}



Conclusion

A proof theoretic foundation for session types:

I The first session type system expressed in the calculus of structures enabling:

I a natural notion of multi-party compatibility (using provability);

I A consistent notion of subtyping (using linear implication);

I Projection from global types guarantees multi-party compatiblility.

Applications to security include:

I Runtime monitoring to detect violations of specified protocols.

I Type checking code for confomance to a role in a security protocol.

I Verification of security protocols themselves in dependently typed extensions.

Future extensions include fixed points or replication to enable the analysis of protocols
with unbounded participants and the behaviour of attackers with the ability to initiate
unbounded sessions.



Extra Example: Tiu’s Counterexample

Role P: ∼begin (Data) to Q ;
{

par ∼fun (Control) to Q
and done (Data) from Q
}

Role Q: {
par begin (Data) from P
and fun (Control) from P

} ;
∼done (Data) to P

Coordinating middleware: sync begin (Data) to Q and ∼begin (Data) from P

sync fun (Control) to Q and ∼fun (Control) from P

sync done (Data) to P and ∼done (Data) from Q



Extra Example: Tiu’s Counterexample

par {
∼begin (Data) to Q ;
{

par ∼fun (Control) to Q
and done (Data) from Q
}

}
and {
{

par begin (Data) from P
and fun (Control) from P

} ;
∼done (Data) to P

}
and {

sync begin (Data) to Q and ∼begin (Data) from P
}
and {

sync fun (Control) to Q and ∼fun (Control) from P
}
and {

sync done (Data) to P and ∼done (Data) from Q
}



Extra Example: Tiu’s Counterexample (deep step)

par {
∼begin (Data) to Q ;
∼fun (Control) to Q ;
done (Data) from Q
}

}
and {

begin (Data) from P ;
fun (Control) from P ;
codone (Data) to P

}
and {

sync begin (Data) to Q and ∼begin (Data) from P ;
sync fun (Control) to Q and ∼fun (Control) from P ;
sync done (Data) to P and ∼done (Data) from Q

}



Extra Example: Tiu’s Counterexample

{
par

∼begin (Data) to Q
and

begin (Data) from P
and

sync begin (Data) to Q and ∼begin (Data) from P
} ;

par

∼fun (Control) to Q
and

fun (Control) from P
and

sync fun (Control) to Q and ∼fun (Control) from P
} ;

par

done (Data) from Q
and

codone (Data) to P
and

sync done (Data) to P and ∼done (Data) from Q
}



Extra Example: Tiu’s Counterexample

{
sync {

par ∼begin (Data) to Q and begin (Data) to Q
}
and {

par ∼begin (Data) from P and begin (Data) from P
}

} ;
{

sync {
par ∼fun (Control) to Q and fun (Control) to Q

}
and {

par ∼fun (Control) from P and fun (Control) from P
}

} ;
{

sync {
par ∼done (Data) to P and done (Data) to P

}
and {

par ∼done (Data) from Q and done (Data) from Q
}

}



Extra Example: Tiu’s Counterexample

{ }

Tiu’s counterexample is coherent with respect to:

begin (Data) from P to Q ;
fun (Function) from P to Q ;
done (Data) from Q to P


