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Abstract

We provide an introduction to the Web of Linked Data from the perspective of a Web developer who would like to
build an application using Linked Data. We identify a weakness in the development stack, namely a lack of domain
specific scripting languages for designing background processes that consume Linked Data. To address this weakness,
we design a scripting language with a simple but appropriate type system. In our proposed architecture, some data is
consumed from sources outside of the control of the system and some data is held locally. Stronger type assumptions
can be made about the local data than about external data, hence our type system mixes static and dynamic typing.
We prove that our type system is algorithmic; and can therefore be used for minimal type inference. We also prove
subject reduction and type safety results, which justify our claim that our language is statically type checked and does
not throw basic runtime type errors. Throughout, we relate our work to the W3C recommendations that drive Linked
Data, so that our syntax is accessible to Web developers.
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1. Introduction

The Web of Linked Data is the cumulation of over a decade of work by the Web standards community in their
effort to make data more Web-like. In data published as Linked Data [6], we use URIs (Web addresses) to identify
resources to allow data about resources to be dereferenced (looked up) using a simple protocol. The data obtained
by dereferencing URIs contains more URIs that can also be looked up. The advantage of this model is that, like the
Web of hypertext, there are no boundaries between datasets. A dataset can unambiguously refer to a URI used as an
identifier in any other dataset.

In the world of Linked Data you can be a producer or a consumer. A Linked Data producer typically owns data,
e.g. public government data [48], that would benefit from being openly published so that it can be combined with
other published datasets. A Linked Data consumer typically has a service to deliver that can be enriched by data from
external sources. For example, the Web site for the 2012 Olympics used Linked Data to help journalists discover and
organise statistics about little-known medal winners during the games. Due to links bringing down barriers between
datasets, the Web of Linked Data is establishing itself as one of the world’s largest datasets in the hands of Web
developers. In this work, we focus on the requirements of Web developers that consume Linked Data.

The state of the art for commercial Linked Data solutions enable rich Linked Data driven Web sites to be devel-
oped. The core of an application that consumes Linked Data is a triple store. Commercial grade triple stores [13, 22,
28] allow efficient execution of queries over loosely structured data at scales of billions of triples, which is sufficient
to cache enough data for most applications. Column store based techniques enable warehouse scale analytical work-
loads over triples [1]. Furthermore, the back end of commercial solutions such as Virtuoso [22] and the Information
Workbench [27] can extract data from diverse sources. This allows us to take a liberal view of the Web of Data, where
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data can be extracted from open data APIs provided by popular services from Twitter, Facebook and Google. Through
experience with master students, we found that developers with experience of a Web development platform such as
.NET or Ruby-on-Rails can assemble a front end for a Linked Data driven application in a matter of days, simply by
shifting their query language from SQL to SPARQL.

In contrast to our positive experience with triple stores and front end development, we found that existing pro-
gramming environments that consist of a general purpose language and a library obstructed swift development of
background processes with low level details. Background process are processes that are not called directly by clients,
but instead run independently in the background automatically discovering and updating data in the triple store. This
exposes the need for a high level language that simplifies the process of scripting background processes that consume
Linked Data. The first contribution of this work is to specify exactly such a scripting language.

We then address the problem of designing a type system for our scripting language. Linked Data published on the
Web from multiple sources is inherently messy, so data arriving over HTTP must be dynamically type checked. The
data is then loaded into a local triple store. The local triple store persists a view of the Web of Linked Data relevant to
the Linked Data consumer. Once the consumed Linked Data has been dynamically type checked, queries and scripts
over the local data can be type checked using a mix of dynamic and static type checking. Our type system is designed
to respect a small but useful subset of the W3C standards SPARQL, RDF Schema and OWL.

The objective of this work is not to define an elaborate or novel type system. On the contrary, the objective is to
design a language and type system that are as simple as possible, while still being useful to Linked Data consumers.
The runtime errors avoided by the type system, such as dereferencing a number or adding a string to a number,
routinely occur when programming. Our type system avoids these errors with minimal impact on the programmer.
Indeed, due to our minimal type inference algorithm, the programmer need not be aware of the type system.

In the area of Linked Data, considerable attention has been paid to “types” in the AI sense of semantic net-
works [49]. However, there is little work on types in Linked Data in the type theoretic sense. A more elaborate type
system that covers a larger part of the RDF Schema recommendation [11] appears in [33], but at the cost of blurring
the distinction between types and data. Elsewhere, another notion of type is employed in [20], for enforcing access
control policies on Linked Data based on provenance. This paper is an extended version of a workshop paper [18]
presented at WWV 2013. This paper extends the workshop paper with results that show that the type system is algo-
rithmic, hence can be used for type inference. This paper also features more comprehensive subject reduction and type
safety results. The final contribution is a discussion on how the type system can be used to infer schema information,
which in Linked Data is not provided a priori.

Structure. In Section 2, we describe a simple architecture for a Linked Data consumer that allows sufficiently strong
assumptions to be made about the types of locally persisted data. In Section 3 we argue for a notion of type that aligns
with the relevant W3C recommendations and is as simple as possible whilst picking up basic programming errors.
In Section 4, we define the syntax of our scripting language for consuming Linked Data and the rules of our type
system. We prove that our type system is algorithmic, and hence can be used for type inference. In Section 5, we
define a operational semantics for our language based on reductions. The operational semantics are used to prove the
correctness of our type system, via subject reduction and type safety results. In Section 6, we discuss how our type
system can assist in extracting and inferring schema information. Finally, we discuss related work on types, languages
and consumming data from the Web in Section 7.

2. From a Web of Documents to a Web of Data

In 1989, Tim Berners-Lee proposed a hypertext system that became the World Wide Web. In his proposal [5], he
observes that hypertext systems from the 1980’s failed to gain traction because they attempted to justify themselves
on their own data. He described a simple but effective architecture for exposing existing data from file systems and
databases as HTML documents that link to other documents using URIs. This architecture is still used today to present
documents that link to documents.

Despite the success of the World Wide Web, Berners-Lee was not completely satisfied. He also wanted to make
raw data itself Web-like, not just the documents that present data. His first vision was called the Semantic Web [7],
which was an AI textbook vision of a world where intelligent agents would understand data on the Web to do every day
tasks on our behalf. As admitted by Berners-Lee and his co-author Hendler, there was much hype but limited success
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scaling ideas. Hendler self-critically asked: “Where are all the intelligent agents?” [31]. By 2006 [47], Berners-Lee
had come to the conclusion that there had been too much emphasis on deep ontologies and not enough data.

Thus Berners-Lee returned to the grass roots of the Web: the Web developers. He described a simple protocol for
publishing raw data on the Web [6]. The protocol makes use of standards, namely URIs as global identifiers, HTTP
as a transport layer and RDF as a data format, according to the following principles:

• use URIs to identify resources (i.e. anything that might be referred to in data),

• use HTTP URIs to identify resources so we can look them up (using the HTTP GET verb),

• when a URI is looked up, return data about the resource using the standards (RDF),

• include URIs in the data, so they can also be looked up.

Data published according to the above protocol is called Linked Data. An HTTP URI that returns data when it is
looked up is a dereferenceable URI. All URIs that appear in this paper are dereferenceable, so are part of this rapidly
growing Web of Linked Data [30].

The Linked Data protocol is one example of a RESTful protocol [23], which leverages the HTTP verbs (including
GET, PUT and DELETE) to consume and publish resources identified by URIs. Many data protocols such as the
Twitter API2, Facebook Open Graph protocol3 and the Google Data API4 are RESTful, and with some creativity they
can be broadly interpreted as Linked Data. Hence, like the Web of hypertext, the Web of Data should not justify itself
solely on its own data.

2.1. An Architecture for Consuming Linked Data
Data owners may want to publish their data as Linked Data. Publishing Linked Data is no more difficult than

building a traditional Web page. The developer should provide an RDF view of a dataset rather than an HTML
view [10]. Data from diverse sources such as Wikipedia [9] and governments [48] can be lifted to the Web of Linked
Data.

Data consumers may not own data, but have a data centric service to deliver. Data consumers can consume data
from many Linked Data sources then exploit links between datasets. Consuming Linked Data is the main focus in our
work. In Figure 1, we describe a simple architecture for an application that consumes Linked Data. The architecture
is an extension of the traditional Web architecture.

At the heart of our application is a triple store, which replaces the more traditional relational database. A triple
store is optimized for storing RDF data in subject-property-object form corresponding to a labelled edge in a graph.
There are several commercial grade triple stores including Sesame, Virtuoso and 4store [13, 22, 28], which can operate
at scales of billions of triples, i.e. enough for typical Web applications.

The front end of our application follows the traditional Web architecture pattern, where Web pages are generated
from a database using scripts. The only difference is that our application uses SPARQL Query instead of SQL to read
from the triple store. The syntax of SPARQL is similar to SQL, hence it is easy for an experienced Web developer to
develop the front end. Most popular Web development frameworks, such as Ruby on Rails [41], have been extended to
support SPARQL. The main reason that SQL is replaced with SPARQL is that a triple store typically stores data from
heterogeneous data sources. Heterogeneous data sources are difficult to combine and query using tables with relational
schema; whereas combining and querying graph models is more straightforward. Thus links between datasets can be
more easily exploited in queries.

The key novel feature of an application that consumes Linked Data is the back end. At the back end, background
processes can crawl the Web of Linked Data to discover new and relevant Linked Data sources. Back end processes
also keep local Linked Data up-to-date. For example, data from a news feed may change hourly and changes are
made to Wikipedia several times every second. To consume data relevant to the application, the background processes
should be programmable. This work focuses in particular on high level programming languages that can be used when
programming the back end of an application. The background processes must be able to dereference Linked Data and
update data in the triple store, as well as make decisions based on query results.

2Twitter API: https://dev.twitter.com/docs/api/1.1
3Facebook Open Graph protocol: https://developers.facebook.com/docs/opengraph/
4Google Data API: https://developers.google.com/gdata/

3

https://dev.twitter.com/docs/api/1.1
https://developers.facebook.com/docs/opengraph/
https://developers.google.com/gdata/


HTML

front end processes

Ajax

OO

SPARQL
��

triple store

background processes

SPARQL

OO

REST
��

RDF

Front end: traditional Web architecture,
with SPARQL replacing SQL.

Triple store: Persists a local view of the
Web of Linked Data, relevant to a service.

Back end: pulls raw data from the Web,
using RESTful open data APIs.

Figure 1: A simple but effective architecture for an application that consumes Linked Data.

2.2. A Low Level Approach to Consuming Linked Data
The back end of the application that consumes Linked Data should keep track of every URI accessed through the

HTTP protocol. We describe the dereferencing of URIs at a low level, to be concrete about what a high level language
should abstract.

Consider an illustrative example of dereferencing a URI. To dereference URI dbpedia:Kazakhstan we perform an
HTTP GET with an HTTP header indicating that we accept the mime type text/n3, in which case we get a 303 See
Other response similar to the following.5

GET /resource/Kazakhstan HTTP/1.1

Host: dbpedia.org

Accept: text/n3

HTTP/1.1 303 See Other

Content-Type: text/n3

Location: http://dbpedia.org/data/Kazakhstan.n3

A 303 See Other response means that you can get data of the serialisation type you requested at another location,
indicated by the location header in the response above. If we now perform an HTTP GET request at the URI indicated
by the 303 See Other response (http://dbpedia.org/data/Kazakhstan.n3), we get an HTTP 200 OK response
including the following headers:

GET /data/Kazakhstan.n3 HTTP/1.1

Host: dbpedia.org

Accept: text/n3

HTTP/1.1 200 OK

Date: Tue, 26 Mar 2013 15:39:49 GMT

Content-Type: text/n3

From the response header (above right) we can tell that this URI successfully returned some RDF using the n3
serialisation format. However, although the data was obtained from the second URI, the resource represented by
dbpedia:Kazakhstan is described in the data.

The 303 See Other response is one of several ways Linked Data may be published using a RESTful protocol [30].
Furthermore, some systems such as the Virtuoso triple store [22] use wrappers to extract RDF data from other data
sources, such as the Google Data API or the Twitter API. The programmer of a script that consumes Linked Data
should not worry about details such as wrappers or the serialisation formats. Unfortunately, existing libraries for
popular programming languages [4, 39] are at a low level of abstraction. We propose that a higher level language [50,
24] can hide the above details in a compiler that automatically tries to dereference URIs.

5Reproducible using: curl -I -L -H "Accept:text/n3" http://dbpedia.org/resource/Kazakhstan
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2.3. A High Level Approach to Consuming Linked Data

Here we consider languages that consume Linked Data at a higher level of abstraction. The only essential infor-
mation is the URI to dereference and the data returned. Other features of a high level language include control flow
and queries to decide what other URIs to dereference.

Consider the following script (based loosely on SPARQL [29]). The from named keyword indicates that we
dereference the URI indicated. The keyword select binds a term to the variable $x. The where keyword indicates
that we would like to match a given triple pattern. Notice that the second from named keyword dereferences a URI
bound to $x that is not known until the query pattern is matched.

from named dbpedia:Kazakhstan
select $x

where

graph dbpedia:Kazakhstan {dbpedia:Kazakhstan dbp:capital $x}
from named $x

The above script first ensures that data representing the resource dbpedia:Kazakhstan is stored in a distinguished sub
graph with a name, called a named graph [14]. It is good practice to create a new named graph in the local triple store
for every distinct URI dereferenced. Each named graph is named according to the URI that was dereferenced — in
this case the URI dbpedia:Kazakhstan. This gives our applications a partial view of the Web of Linked Data in their
local triple store, which can be queried with low latency.

If the URI has not been accessed before, then the URI is dereferenced, and a new named graph is created. Note
that, if the URI is not dereferenced successfully, then this information can be recorded to avoid future attempts to
dereference the URI.

Having dereferenced the first URI, the query indicated in the where clause is evaluated. The query consists of a
named graph to read, indicated by the graph keyword, and a triple pattern. In the pattern, the subject is the resource
dbpedia:Kazakhstan , the property is dbp:capital , and the object is not bound. This query should find exactly one
binding for $x to proceed. The query proceeds by discovering a URI (in this case dbpedia:Astana ), and substituting
this URI for $x everywhere in the script. After the substitution, the second from named keyword dereferences the
discovered URI and loads the data into the triple store, as described above.

The above script abstracts away several HTTP GET requests and possibly some redirects and mappings between
formats. It also encapsulates details where the following SPARQL Query is sent to the local SPARQL endpoint.

select $x from named dbpedia:Kazakhstan where
{ graph dbpedia:Kazakhstan {dbpedia:Kazakhstan dbp:capital $x} } limit 1

At a lower level of abstraction, the above query would return a results document indicating that $x has one possible
binding. Another programming language would extract the binding from the results document, then use the binding
in some code that dereferences the URI. Just doing this simple task in Java for example takes several pages of code.
The Java program also involves treating parts of the code, such as the above query as a raw string of characters, which
means that even basic syntax errors cannot be checked at compile time.

We argue that using the high level script presented at the beginning of this section is simpler than using a general
purpose language with libraries concerned with details of HTTP GET requests, constructing queries from strings and
extracting variable bindings from query results. Furthermore, it is worth noting that the syntax of the script does not
significantly depart from the syntax of the SPARQL recommendations. In this way, we explore the idea of a domain
specific scripting language for background processes of an application that consumes Linked Data.

3. Simple Types in W3C Recommendations

The W3C recommendations do not explicitly introduce a type system for Linked Data. However, there are some
ideas in the RDF Schema [11] and OWL [32] recommendations that can be used as a basis of a type system. Here
we identify one of the simplest notion of a type, and justify the choice with respect to recommendations. The chosen
notion of a type fits with types in Facebook’s Open Graph.
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Simple Datatypes. The only common component of the W3C recommendations in this section is the notion of a
simple datatype. Simple datatypes are specified as part of the XML Schema recommendation [8]. A type system for
Linked Data should be aware of the simple datatypes that most commonly appear, in particular xsd:string, xsd:integer ,
xsd:decimal and xsd:dateTime. All these types draw from disjoint lexical spaces, with the exception of xsd:integer
which is a subtype of xsd:decimal . Note that, for this work, we assume that xsd:decimal , xsd:float and xsd:double
are different lexical representations of an abstract numeric type.

In the XML Schema recommendation, there is a simple datatype xsd:anyURI . This type is rarely explicitly used
in ontologies — the ontology for DBpedia only uses this type once as the range of the property dbp:review. However,
it unambiguously refers to any URI and nothing else, unlike rdfs:Resource and owl:Thing which, depending on
the interpretation, may refer to more than just URIs or a subset of URIs. In this way, our type system is based on
unambiguous simple datatypes, that frequently appear in datasets, such as DBpedia [9].

Resource Description Framework. A URI is successfully dereferenced when we get a document from which we can
extract RDF data [19]. The basic unit of RDF is the triple. An RDF triple consists of a subject, a property and an
object. The subject, property and object may be URIs, and the object may also be a simple datatype. Most triple stores
support quadruples, where a fourth URI represents either the named graph [14] or the context from where the triple
was obtained.

Note that the RDF recommendation allows nodes with a local identifier, called a blank node, in place of a URI.
Blank nodes are frequently debated in the community [38], due to several problems they introduce. Firstly, deciding
the equality of graphs with blank nodes is an NP-complete problem; and, more seriously, when data with blank
nodes is consumed more than once, each time the blank node is treated as a new blank node. This can cause many
unnecessary copies of the same data to be created. We assume that our system assigns a new URI to each blank node
in data consumed, hence we do not introduce blank nodes into the local data model. URIs can be assigned to blank
nodes in a number of ways. For example, the consumer may generate a fresh URI for each blank node in a suitable
namespace, where the URI generated encodes unique provenance information about the blank node.

Note that the RDF specification has a vocabulary of URIs that have a distinguished role, notably rdf:type . For
example, the triple dbpedia:Kazakhstan rdf:type dbpedia:Republic classifies the resource dbpedia:Kazakhstan
as a dbpedia:Republic . The property rdf:type has little to do with the simple data types in this work. In RDF,
rdf:type is used in the AI sense of a semantic network [49], rather than in a type theoretic sense. Triples that use
the property rdf:type can be changed like any other data, e.g. a country can change from a dbpedia:Republic to a
dbpedia:Federation . However, a type system is used for static analysis. Hence we make the design decision not to
include AI types in our type system. For comparison, [34] allows more information from AI style types to be lifted to
the type system.

RDF Schema. The RDF Schema recommendation [11] provides a core vocabulary for classifying resources using
RDF. From this vocabulary we borrow only the top level class rdfs:Resource and the property rdfs:range . All URIs
are considered to identify resources, hence we equate rdfs:Resource and xsd:anyURI . We define property types for
URIs that are used in the property position of a triple. A property type restricts the type of term that can be used in the
object position of a triple. For example, according to the DBpedia ontology, the property dbp:populationDensity has
a range xsd:decimal. Thus our type system should accept that dbpedia:Kazakhstan dbp:populationDensity 5.94 is
well typed. However, the type system should reject a triple with object "5.94" which is a string. We use the notation
range(xsd:decimal) for URIs representing properties permitting numbers as objects.

The RDF Schema rdfs:domain of a property is redundant for our type system because only URIs can appear as
the subject of a triple, and all URIs are of type xsd:anyURI. Note that properties are resources because they may
appear in data. For example, the triple dbp:populationDensity rdfs:label "population density (/sqkm)"@en
provides a description of the property in English.

Web Ontology Language. The Web Ontology Language (OWL) [32] is mostly concerned with classifying resources,
but classifying resources is not part of our type system. The OWL classes that are related to our type system are
owl:ObjectProperty , owl:DataTypeProperty and owl:Thing . An owl:ObjectProperty is a property permitting URIs
as objects, i.e. the type range(xsd:anyURI) in our type system. An owl:DataTypeProperty is a property with one of
the simple datatypes as its value.
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In OWL [32], owl:Thing represents resources that are neither properties nor classes. We decide to equate
owl:Thing with xsd:anyURI in our type system. This way we unify xsd:anyURI , rdfs:Resource and owl:Thing as
the top level of all resources. We do not consider any further features of OWL to be part of our type system.

SPARQL Protocol and RDF Query Language. The SPARQL suite of recommendations makes reference only to
simple types. SPARQL Query [29] specifies the types of basic operations that are used to filter queries. For example,
a regular expression can only apply to a string, and the sum to two integers is an integer. SPARQL Query treats all
URIs as being of type URI. We also adopt this approach.

Open Graph Protocol. Facebook’s Open Graph protocol uses an approach to Linked Data called microformats, where
bits of RDF data are embedded into HTML documents. Microformats help machines to understand the content of the
Web pages, which can be used to drive powerful searches. The Open Graph documentation states the following:
“properties have types that determine the format of their values.”6 In the terminology of the Open Graph documen-
tation, the value of a property is the object of an RDF triple. The documentation explicitly includes the simple data
types, xsd:string, xsd:integer , etc., as types permitted to appear in the object position. This corresponds to the notion
of type throughout this section.

3.1. Local Type Checking for Dereferenced Linked Data

We design our system such that, when a URI is dereferenced, only well typed queries are loaded into the triple
store. This means that we can guarantee that all triples in the triple store are well typed.

Suppose that after dereferencing the URI dbpedia:Kazakhstan we obtain the following two triples:

dbpedia:Kazakhstan dbp:demonym "Kazakhstani"@en .
dbpedia:Kazakhstan dbp:demonym dbpedia:Kazakhstani .

Suppose also that the property dbp:demonym has the type range(xsd:string). The first triple is well typed, hence it is
loaded into the triple store and put in the named graph dbpedia:Kazakhstan . However, the second triple is not well
typed, and would therefore be ignored. No knowledge of other triples loaded into the store is required, i.e. our type
system is local.

Since only well typed triples are loaded into the local triple store, scripts that use data in the local triple store can
rely on type properties. Thus, for example, if a script consumes the object of any triple with dbp:demonym as the
property, then the script can assume that the term returned will be a string. This allows some static analysis to be
performed by a type system for scripts. This observation is the basis of the type system in the next section.

4. A Typed Scripting Language for Linked Data Consumers

In this section, we define our language and type system. A grammar specifies the abstract syntax, and deductive
rules specify the type system. We briefly outline the operational semantics, which is defined as a reduction system.

4.1. Syntax

We introduce a syntax for a typed high level scripting language that is used to consume Linked Data.

The Syntax of Types. A type is either a simple datatype, or it is a property that allows a simple datatype as its
range, as follows:

datatypeF xsd:anyURI | xsd:string | xsd:decimal | xsd:dateTime | xsd:integer

typeF datatype | range(datatype) ΓF ε | $x : type,Γ

6https://developers.facebook.com/docs/opengraph/property-types/ accessed 23/3/13.
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If a URI with a property type is used in the property position of a triple, then the object of that triple can only
take the value indicated by the property type. URIs used as properties are assigned a datatype using the finite partial
function S ( · ) from URIs to datatypes, called the schema. The data type determines the type of term that can occur in
the object position. The schema can be derived from ontologies, such as the DBpedia ontology, or inferred from how
the property is used in data. Note that constructing and maintaining S ( · ) can be challenging — a point we return to
in Section 6.

Type environments are defined by lists of assignments of variables to types. As in popular scripting languages,
such as Perl and PHP, variables begin with a dollar sign. Thus the token variable ranges over the lexemes $x, $y, etc.

The Syntax of Terms and Expressions. Terms are used to construct RDF triples. Terms can be URIs, variables or
literals of a simple datatype, each of which is drawn from a disjoint pool of lexemes7.

• URIs, indicated by token uri, are either full addresses, defined by RFC3987 [21], surrounded by angular brack-
ets, e.g. 〈http://dbpedia.org/resource/URI〉, or abbreviated using an XML namespace, e.g. dbpedia:URI .

• Numbers are either integers or decimals, indicated by tokens integer and decimal. Decimals can be either
floating point numbers, e.g. 99.9, or floating point numbers with an exponent, e.g. 0.999e2.

• Strings, indicated by token string, e.g. "verification"@en-GB, are a list of characters in quotes followed by
a language tag indicating the language used in the string. Language tags are defined by RFC4646 [43].

• The token dateTime ranges over lexemes that encode the date, time in hours, minutes and seconds and time
zone, e.g. 2013-06-06T13:00:00+01:00.

A language tag can be matched by a simple pattern, called a language range (lang-range), where * matches any
language tag, en matches any dialect of English, etc. Language ranges are specified in RFC4646 [43].

A string can be accepted or rejected by a regular expression. For example the regular expression WWV.* accepts
the string "WWV 2013". Regular expressions over strings conform to the XPath recommendation [37].

Expressions, defined by the grammar below, are formed by applying unary and binary functions over terms.

termF variable | uri | string | integer | decimal | dateTime

exprF term | now | str(expr) | abs(expr) | expr + expr | expr − expr | . . .

The SPARQL Query recommendation [29] defines several standard functions including str, which maps any term to
a string, and abs, which returns the absolute value of a number. The expression now represents the current date and
time. The vocabulary of functions may be extended as required.

7Lexical concerns are hidden in high level languages, e.g. the short syntax for turtle [45]. At a low level, a lexer [2] would convert the lexeme 3
into a attribute-value/token-name pair "3"ˆˆxsd:integer, as in [19].
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The Syntax of Scripts. Scripts are formed from boolean expressions, data and queries. They define a sequence of
operations that use queries to determine what URIs to dereference.

booleanF true

| false

| boolean || boolean
| boolean && boolean
| !boolean
| regex (expr, regex)
| langMatches(expr, lang-range)
| expr = expr
| expr < expr | . . .

triplesF term term term
| triples triples

dataF graph term {triples}
| data data
| {}

queryF data
| boolean
| query query
| query union query

scriptF where query script
| from named term script
| select variable : type script
| do script
| script script
| success

Data is represented as quadruples of terms, which always indicate the named graph. In SPARQL, the graph and
from named keywords work in tandem. The from named keyword makes data from a named graph available, whilst
keeping track of the context. The keyword graph allows the query to directly refer to the context. This contrasts to
the from keyword in SPARQL which fetches data without keeping the context. We extend the meaning of the from
named keyword so that the URI is dereferenced and makes the data available from that point onwards in the context
of the URI that is referenced.

Boolean expressions are called filters in the terminology of SPARQL. We drop the keyword filter, because the
syntax is unambiguous without it. Filters can be used to match a string with a regular expression or language tag, or
compare two expressions of the same type.

Queries are constructed from filters and basic graph patterns indicated by the keyword where. The basic graph
pattern should be matched using data in the local triple store. The basic graph pattern may contain variables. Variables
in a script must be bound using the select keyword. In this scripting language, the select keyword acts like an
existential quantifier. The variables bound by select are annotated with a type. However these type annotations may
be omitted by the programmer, since they can be algorithmically inferred using the type system.

4.2. The Type System

According to the SPARQL recommendation, a query that violates types silently fails, returning an empty result.
However, a type error is generally caused by an oversight of the programmer. It would be helpful to provide a type
error at compile time, indicating that a query has been designed such that the types guarantee that no result will ever
be returned. For this purpose, we introduce the type system presented in this section.

xsd:anyURI

range(xsd:string)

55

range(xsd:integer)

OO

range(xsd:dateTime)

jj

range(xsd:anyURI)

mm

range(xsd:decimal)

OO

Figure 2: Subtype relations between types that can be assigned to URIs.
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Subtypes. We define a subtype relation, that decides when one type can be treated as another type. The system
indicates that xsd:integer is a subtype of xsd:decimal . It also defines property types to be contravariant, i.e. they
reverse the direction of subtyping. In particular, if a property permits decimal numbers in the object position, then it
also permits integers in the object position.

` xsd:integer ≤ xsd:decimal ` type ≤ type

` datatype1 ≤ datatype2

` range
(
datatype2

)
≤ range

(
datatype1

) ` range(datatype) ≤ xsd:anyURI

The subtype relations between types that can be assigned to URIs are summarised in Figure 2.

The type system for terms and expressions. Types for terms assign types to lexical tokens. Types for URIs that are
used as properties are determined using the schema partial function S ( · ), which determines the range of the property,
i.e. what terms can appear in the object position of a triple. Types for expressions ensure that operations are only
applied to resources of the correct type.

` type0 ≤ type1

Γ, $x : type0 ` $x : type1

` range(S (uri)) ≤ type

Γ ` uri : type

` xsd:integer ≤ datatype

Γ ` integer : datatype

Γ ` uri : xsd:anyURI Γ ` decimal : xsd:decimal Γ ` string : xsd:string

Γ ` dateTime : xsd:dateTime Γ ` now : xsd:dateTime

Γ ` expr1 : datatype Γ ` expr2 : datatype ` datatype ≤ xsd:decimal

Γ ` expr1 + expr2 : datatype

Γ ` expr : datatype

Γ ` str(expr) : xsd:string

Γ ` expr : datatype ` datatype ≤ xsd:decimal

Γ ` abs(expr) : datatype

The above types can easily be extended to cover all functions in the SPARQL recommendation, such as seconds
which maps an xsd:dateTime to a xsd:decimal . Our examples include the custom function haversine which maps
four expressions of type xsd:decimal to one xsd:decimal .

The type system for filters follows a pattern similar to that of expressions. For example, the type system ensures
that only terms of the same type can be compared.

Γ ` expr : xsd:string

Γ ` regex (expr, regex)

Γ ` expr : xsd:string

Γ ` langMatches(expr, lang-range)

Γ ` expr1 : datatype Γ ` expr2 : datatype

Γ ` expr1 = expr2

Γ ` expr1 : datatype Γ ` expr2 : datatype

Γ ` expr1 < expr2

Γ ` boolean0 Γ ` boolean1

Γ ` boolean0 && boolean1

Γ ` boolean0 Γ ` boolean1

Γ ` boolean0 || boolean1

Γ ` boolean

Γ ` !boolean
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The type system for data. The types for terms are used to restrict the subject of triples to URIs, and the object to the
type prescribed by the property. For quadruples, the named graph is always a URI, as prescribed by the type system.

Γ ` term1 : xsd:anyURI Γ ` term3 : S (uri)

Γ ` term1 uri term3

Γ, $x : range(datatype) ` term1 : xsd:anyURI Γ, $x : range(datatype) ` term3 : datatype

Γ, $x : range(datatype) ` term1 $x term3

Γ ` triples1 Γ ` triples2

Γ ` triples1 triples2

Γ ` term0 : xsd:anyURI Γ ` triples

Γ ` graph term0 { triples }

` datatype ≤ S (uri)

` uri rdfs:range datatype

` xsd:anyURI ≤ S (uri0)

` uri0 rdfs:range uri1

` xsd:anyURI ≤ S (uri)

` uri rdf:type owl:ObjectProperty

We include special type rules for three particular forms of triples. The first, from the RDF Schema vocabulary [11],
allows the range of a property to be explicitly prescribed as a datatype. The second implies that if the range of a
property is anything other than a datatype, then the property must range over URIs. The second, from the OWL
vocabulary [32], prescribes when the range of a property is a URI. When schema information is not available about
URIs used as properties, these rules can help calculate the minimum schema partial function S ( · ) that allows a dataset
to be typed. We return to these rules in Section 6, where we explain how schema information can be extracted using
the type system.

The Type System for scripts. Scripts can be type checked using our type system. The rule for the from named
keyword checks that the term to dereference is a URI. The rule for the selectmakes use of an assumption in the type
environment to ensure that the variable is used consistently in the rest of the script, where the variable is bound.

Γ ` query1 Γ ` query2

Γ ` query1 query2

Γ ` query1 Γ ` query2

Γ ` query1 union query2

Γ ` success
Γ ` query Γ ` script

Γ ` where query script

Γ ` term : xsd:anyURI Γ ` script

Γ ` from named term script

Γ, $x : type ` script

Γ ` select $x : type script

Γ ` script

Γ ` do script

Γ ` script0 Γ ` script1
Γ ` script0 script1

If a script is well typed with an empty type environment, then all the variables must be bound using the rule for
the select quantifier. Furthermore, since the select quantifier does not appear in data, no variables can appear in
well typed data. We assume that scripts and data are executable only if they are well typed with respect to an empty
type environment.

4.3. Examples of Well Typed Scripts
We consider some well typed scripts, and suggest some errors that our type system avoids.
The following script is well typed. The script finds resources in any named graph that has a label in the Russian

language. It then dereferences the resources. The keyword do means that the script is iterated, where the number of
times a script is iterated should correspond to the number of query results.

do select $g : xsd:anyURI, $x : xsd:anyURI, $y : xsd:string
where

graph $g {$x rdfs:label $y}
langMatches($y, ru-*)

from named $x
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Note that if we use the variable $y instead of $x in the from named clause, then the script could not be typed.
The variable $y would need to be both a string and a URI, but it can only be one or the other. We assume that
S (rdfs:label) = xsd:string.

The following well typed script looks in two named graphs. In named graph dbpedia:Kazakhstan , it looks for
properties with dbpedia:Kazakhstan as the object, and in the named graph dbp: it looks for properties that have either
a label or comment that contains the string "location".

select $p : range(xsd:anyURI) , $y : xsd:string, $z : xsd:string
where

{

graph dbp: {$p rdfs:label $y}
union

graph dbp: {$p rdfs:comment $y}
}

graph dbpedia:Kazakhstan {$z $p dbpedia:Kazakhstan}
regex ($y, location) && langMatches($y, en-*)

from named $p

We must assume that S (rdfs:comment) = xsd:string. If we assume that the range of rdfs:comment is anything other
than xsd:string, then the above query is not well typed. Note also that property $pmust be of type range(xsd:anyURI).
We cannot assign it a more general type such as xsd:anyURI , although we can use it as a resource.

from named dbpedia:Almaty
select $almalat : xsd:decimal, $almalong : xsd:decimal
where

graph dbpedia:Almaty {dbpedia:Almaty geo:lat $almalat}
graph dbpedia:Almaty {dbpedia:Almaty geo:long $almalong}

from named dbpedia:Kazakhstan
do select $loc : xsd:anyURI
where

graph dbpedia:Kazakhstan {$loc dbp:location dbpedia:Kazakhstan}
from named $loc

select $lat : xsd:decimal, $long : xsd:decimal
where

graph $loc {$loc geo:lat $lat}
graph $loc {$loc geo:long $long}
haversine($lat, $long, $almalat, $almalong) < 100

do select $person : xsd:anyURI
where

graph $loc {$person dbp:birthPlace $loc}
from named $person

Figure 3: Get data about people born in places in Kazakhstan less than 100km from Almaty.

Finally, consider the substantial example of Figure 3. We assume that the function haversine calculates the
distance (in km) between two points identified by their latitude and longitude. The script pulls in data about places
located in Kazakhstan. It then uses this data to pull in more data about people born within 100km from Almaty.

4.4. Algorithmic Typing
The type system for our scripting language can be used as the basis of a minimal type inference algorithm [44].

Type inference reverses the reading of the type system. For type checking, we are given an environment Γ and script
script with type annotations, and we ask whether we can prove the type judgement Γ ` script. In contrast, for
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minimal type inference, given a script without type annotations script, we ask whether we can find the weakest type
environment Γ and most general type annotation script′ such that Γ ` script′.

To use a type system in a type inference algorithm, we must check that the type system is algorithmic: every type
rule should use only subterms of its conclusion (the formula below the line) in its premises (the formulae above the
line). If this property holds, then the type system is syntax directed.

A subsumption rule and the transitivity rule for subtyping would violate the subformula property. It is customary
to prove the following lemmas, to show that if the transitivity or subsumption rule were included, then they can be
eliminated from the type system.

Lemma 4.1. If ` type0 ≤ type1 and ` type1 ≤ type2, then ` type0 ≤ type2.

Proof. The trick is to introduce a transitivity rule into the subtype system, then show that it can be eliminated. The
base case, presented below, is when the reflexivity axiom appears on the left or right branch of the transitivity rule. In
this case, the reflexivity axiom destroys the transitivity rule, as follows.

` type0 ≤ type0 ` type0 ≤ type1

` type0 ≤ type1

yields ` type0 ≤ type1

Consider the case where the anyURI axiom appears as the right branch of a transitivity rule, as follows.

` range
(
datatype0

)
≤ range

(
datatype1

)
` range

(
datatype1

)
≤ xsd:anyURI

` range
(
datatype0

)
≤ xsd:anyURI

The left branch above can be removed, leaving only the axiom below.

` range
(
datatype0

)
≤ xsd:anyURI

Consider the case where transitivity is applied to two property types, as follows.

` datatype1 ≤ datatype2

` range
(
datatype2

)
≤ range

(
datatype1

) ` datatype0 ≤ datatype1

` range
(
datatype1

)
≤ range

(
datatype0

)
` range

(
datatype2

)
≤ range

(
datatype0

)
The transitivity rule can be pushed up the derivation tree and applied to the datatypes, resulting in the derivation tree
below.

` datatype0 ≤ datatype1 ` datatype1 ≤ datatype2

` datatype0 ≤ datatype2

` range
(
datatype2

)
≤ range

(
datatype0

)
By induction, since ` datatype0 ≤ datatype1 and ` datatype1 ≤ datatype2 hold, we can assume that ` datatype0 ≤

datatype2 can be derived without using transitivity. This covers all possible cases. Hence the transitivity rule can be
eliminated. �

Lemma 4.2. If Γ ` expr : type0 and ` type0 ≤ type1 hold, then Γ ` expr : type1 holds.

Proof. The trick is to introduce the subsumption rule, below, then prove that it can be eliminated.

` Γ ` expr : type0 ` type0 ≤ type1

` Γ ` expr : type1
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The base cases are the axioms for terms. Consider the case of variables. Assuming that ` type0 ≤ type1 and ` type1 ≤

type2 hold, by Lemma 4.1, ` type0 ≤ type2 holds. Hence given the derivation below on the left, we can construct the
derivation below on the right.

` type0 ≤ type1

` Γ, $x : type0 ` $x : type1 ` type1 ≤ type2

` Γ, $x : type0 ` $x : type2

` type0 ≤ type2

` Γ, $x : type0 ` $x : type2

The cases for simple data types and URIs are similar.
Consider the rule for the addition of two numbers, as follows.

Γ ` expr0 : t0 Γ ` expr1 : t0 ` t0 ≤ xsd:decimal

Γ ` expr0 + expr1 : t0 ` t0 ≤ t1

Γ ` expr0 + expr1 : t1

The only two possible values for t1 are xsd:integer and xsd:decimal, hence t1 ≤ xsd:decimal. Thus we can construct
the following derivation.

Γ ` expr0 : t0 ` t0 ≤ t1

Γ ` expr0 : t1

Γ ` expr1 : t0 ` t0 ≤ t1

Γ ` expr1 : t1 ` t1 ≤ xsd:decimal

Γ ` expr0 + expr1 : t1

Other cases are either immediate or follow a similar pattern. Hence, by structural induction, we can eliminate the
subsumption rule. �

The minimal type inference algorithm works as follows for a script without type annotations:

1. Firstly, we annotate variables appearing in select statements with type variables ranging over X, Y , etc.

2. We then apply the rules of the algorithmic type system to generate inequality constraints over type variables.
We obtain a system of inequality constraints of the form type0 ≤ type1, where type0 and type1 may contain type
variables.

3. Finally, we solve the system of inequality constraints. Either we find the assignment of type variables to types
such that the constraints are satisfied and the types are maximal with respect to the subtype preorder, or there is
no assignment of type variables to types that satisfies the constraints. If there is a solution, then the assignment
is the minimal type assignment for the script. If there is no assignment, then the script cannot be typed and
should be rejected.

The system of inequality constraints is solvable in PTIME [51]. Furthermore, the algorithmic type system is syntax
directed, hence the generation of constraints is linear. Therefore our type inference algorithm is in PTIME.

Consider the first example script in Section 4.3 and remove the type annotations. We demonstrate the minimal
type inference algorithm for this example in Figure 4.

5. Subject Reduction and Type Safety

To prove the correctness of a type system for a language, we require an operational semantics. An operational
semantics is an executable model of the possible behaviours of the language. In this section, we provide a subject
reduction theorem, which proves that if a well typed program is executed then the program remains well typed. We
also provide a type safety theorem which proves that well-typed programs do not throw runtime errors.

In related work, we have studied the operational semantics for languages for Linked Data that are related to the
language proposed in this work. The calculus in [36] provides the first operational semantics for the transaction
language SPARQL Update [25]. The calculus in [35] studies the algebraic properties of transaction languages for
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Linked Data. The calculus in [20] introduces security types based on where and who provenance for dereferenced
Linked Data. The calculus in [17] models why and how provenance for transactions over Linked Data. Finally, there
is existing work that proves subject reduction theorems for type systems inspired by RDF Schema [33]; however this
work deliberately selects a smaller and more useful subset of RDF Schema, as explained in Section 3.

5.1. A Syntax for Systems

The behaviour of background processes is influenced by: the scripts themselves, the data in the triple store, and
the dereferenced data consumed from the Web. We gather the scripts and data in a triple store together into a system.
We introduce some syntax for the purpose of modelling systems.

processF data | script | process ‖ process systemF
[
process

]
graphs

Processes are scripts and data composed in parallel. As standard for processes, we assume that parallel composition
forms a commutative monoid with the unit success.

Systems are processes delimited by brackets and annotated by a set of URIs, called graphs. The set of URIs keeps
track of the named graphs that have been dereferenced by the system. It is important to delimit the system, since to
satisfy three of the following requirements we must have knowledge about all the graphs dereferenced by the system:

• If we evaluate from named and the URI indicated has not been dereferenced before, then we dereference the
URI. The data can be of any form, so should first be dynamically type checked before being loaded into the
triple store.

• If we evaluate from named and the URI has already been dereferenced, then we proceed without dereferencing
the URI again.

• At any point a URI that has already been dereferenced can be dereferenced again to update the data. This is
for maintenance purposes, and the rate should be quantified [16] using stochastic methods so that URIs are
revisited at a suitable rate. As with dereferencing the URI for the first time, data coming from the Web should
be dynamically type checked.

• If we try to dereference anything other than a URI, then we throw an error.

The four rules below address each of the requirements above. Notice that the first three rules require a system context
to determine what graphs have been dereferenced, but the fourth rule does not require knowledge of the rest of the
system. When a rule can be applied in any well formed context, we omit the context for brevity.

uri < g ` graph uri {triples}[
from named uri script ‖ Process

]
g −→

[
script ‖ graph uri {triples} ‖ Process

]
g∪{uri}

uri ∈ g[
from named uri script ‖ Process

]
g −→

[
script ‖ Process

]
g

uri ∈ g ` graph uri {triples′}[
graph uri {triples} ‖ Process

]
g −→

[
graph uri {triples′} ‖ Process

]
g

not a uri(term)

from named term script −→ error

Control flow in scripts is based on query results, over data held locally by the system. The select quantifier
selects a term to replace the variable it binds. A small dynamic check is required to ensure that the term used in the
substitution is of the type expected by the select quantifier. The do operator iterates a script zero or more times. At
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the implementation level, the number of iterations corresponds the number of distinct query results in the query it
precedes. The following rules specify the operational behaviour of select and do.

` term : type

select $x : type script −→ script
{
term/$x

}

do script −→ script do script do script −→ success

Note that a poor choice of substitution in the rule for select above can result in the script becoming stuck when
results are available. Thus this rule can involve some backtracking. Similarly, there can be some backtracking in the
rules for evaluating union below.

The union keyword in SPARQL, on a result by result basis, is a choice between two query patterns. Either we can
chose the left branch or the right branch, as in the first two rules below. When a query is reduced to data only and the
data appears in the system, then the conditions of the where clause are met and the script can proceed, as indicated
by the final rule below.

query0 union query1 −→ query0 query0 union query1 −→ query1

where data script ‖ data −→ script ‖ data success script −→ script

Boolean filters can appear in queries to further restrain queries. The logical connectives and, or and not are
evaluated according the rules of classical logic. For a modern term rewriting system approach to the semantics of
classical propositional logic, consider the system SKS [26].

We assume that we have some standard builtin functions. The functions accepts and matches decide whether or
not a string is accepted by the given regular expression, and whether or not a language-tag matches a language-range.
The functions sum int and sum dec add two integers and decimal numbers respectively. The functions int to dec and
to str coerce an integer to a decimal number and any term to a string, respectively. Using the above built-in functions,
we can provide an operational semantics for functions and predicates over expressions.

accepts(string, regex)

regex (string@lang-tag, regex) −→ true

¬accepts(string, regex)

regex (string@lang-tag, regex) −→ false

matches(lang-tag, lang-range)

langMatches(string@lang-tag, lang-range) −→ true

¬matches(lang-tag, lang-range)

langMatches(string@lang-tag, lang-range) −→ false

integer2 = sum int(integer0, integer1)

integer0 + integer1 −→ integer2

decimal2 = sum dec(decimal0, decimal1)

decimal0 + decimal1 −→ decimal2

decimal0 = int to dec(integer)

integer + decimal1 −→ decimal0 + decimal1

decimal1 = int to dec(integer)

decimal0 + integer −→ decimal0 + decimal1

integer < 0

abs(integer) −→ −integer

0 ≤ integer

abs(integer0) −→ integer str(term) −→ to str(term)

The errors for regular expressions, language matches and operators over numbers are as follows. Functions and
predicates over expressions are sensitive to the type of token they are applied to, thus several runtime errors can
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occur at this stage. For detecting dynamic type errors, we assume the built-in functions not a number, not a uri and
not a string, which hold if a term of the wrong token type appears.

not a string(term)

regex (term, regex) −→ error

not a string(term)

langMatches(term, lang-range) −→ error

not a number(term0)

term0 + term1 −→ error

not a number(term)

abs (term) −→ error

5.2. Subject Reduction

We claim that this type system is a novel mix of static and dynamic type checking. Subject reduction is required to
justify the claim that the static type checking can be relied upon. The proof works by case analysis on all operational
rules.

Lemma 5.1. If ` term : type and Γ, $x : type ` script, then Γ ` script
{term/$x

}
.

Proof. The proof follows by structural induction on the type derivation tree. The base cases to check are those where
a variable is substituted for another term.

Assume that ` integer : datatype0 and Γ, $x : datatype0 ` $x : datatype1 hold. By the type rules for integers and
variables, below, it must be the case that xsd:integer ≤ datatype0 and datatype0 ≤ datatype1 hold.

` xsd:integer ≤ datatype0

` integer : datatype0

` datatype0 ≤ datatype1

Γ, $x : datatype0 ` $x : datatype1

By Lemma 4.1, ` integer ≤ datatype1 holds. Hence, by the type rule for integers, the derivation below must hold.

` xsd:integer ≤ datatype1

Γ ` integer : datatype1

A similar argument works for terms of other terms: strings, decimals, dateTimes and URIs.
The proof then proceeds by structural induction for expressions, booleans, queries and scripts. We present the case

for from named. Assume that ` term1 : type, that Γ, $x : type ` term0 : xsd:anyURI and Γ, $x : type ` script. Hence
the following derivation holds.

Γ, $x : type ` term0 : xsd:anyURI Γ, $x : type ` script

Γ, $x : type ` from named term0 script

By structural induction, Γ ` term0
{term1/$x

}
: xsd:anyURI and Γ ` script

{term1/$x
}
. Hence we can construct the following

type derivation tree.
Γ ` term0

{
term1/$x

}
: xsd:anyURI Γ ` script

{
term1/$x

}
Γ ` (from named term0 script)

{
term1/$x

}
Other rules are similar. Thus, by structural induction, the lemma holds. �

The following result proves that a well typed term will always reduce to a well typed term. Thus the type system
is sound with respect to the operational semantics.

Theorem 5.2 (subject reduction). If ` system1 and system1 −→ system2, then ` system2.

Proof. Consider the first operational rule for from named. Assume that both the following hold:

`
[
from named uri script ‖ process

]
graph and ` graph uri {triples}
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By the type rules for systems and processes and from named, it must be the case that ` process and ` script hold.
Thus, by the type rule for processes and systems, `

[
script ‖ graph uri {triples} ‖ process

]
graph∪{uri} holds. Other rules

for from named are similar.
Consider the operational rule for select. Assume that the following hold:

` term : type and ` select $x : type script

By the type rule for select, $x : type ` script must hold. Hence, by the Lemma 5.1, ` script
{term/$x

}
holds.

Consider the operational rule for where. Assume that ` where data script ‖ data holds. By the type rule for
parallel composition, ` where data script and ` data must hold, and, by the type rule for where, ` data and ` script
must hold. Hence, by the rule for processes, ` script ‖ data holds.

Consider the operational rules for union. Assume that ` query0 union query1 holds. By the rule for union,
` query0 and ` query1 hold.

Consider the operational rules for coercion of integers to decimals. Assume that ` integer + decimal1 : type. By
the rule addition and axioms for numbers, it must be the case that type is xsd:decimal. Let decimal0 = int dec(integer)
hence by the axiom for decimals, ` decimal0 : xsd:decimal and ` decimal1 : xsd:decimal. Therefore, by the rule for
addition, ` decimal0 + decimal1 : xsd:decimal. The remaining cases for expressions and predicates are similar. �

5.3. Type Safety

A type system should avoid some basic programming errors. Thus we expect that well typed scripts do not throw
runtime type errors. For our type system, this claim is verified by the following theorem.

Theorem 5.3 (type safety). If ` script and script −→ script′, then script′ does not contain an error.

Proof. The key cases to check are those that can throw an error in the untyped language, in particular, operators in
expressions, boolean predicates over expressions and from named.

Consider the case of evaluating regular expressions in boolean filters. Assume that ` regex (term, regex) holds,
which holds only if ` term : xsd:string. Thus, by the axiom for strings, it must be the case that term is a string. Since
the evaluation of regular expressions is decidable [2], either:

1. regex accepts string and regex (term, regex) −→ true,

2. or regex does not accept string and regex (term, regex) −→ false.

Thus regex cannot throw an error in a well typed script.
Consider the case of from named. Assume that ` from named term script holds, which is only possible if

` term : xsd:anyURI holds and ` script holds. By the induction hypothesis script does not throw an error. Also, it
must by the case that term is a uri. Hence from named cannot throw an error.

The remaining cases follow a similar pattern. �

In contrast to the above theorem, the following untyped script can throw an error.

select $x

where

graph dbpedia:Almaty {dbpedia:Almaty dbp:population $x}
regex ($x, 15.∗)

Our type system does not enjoy some properties that hold for some more strongly typed systems. For example,
an erasure property says that, for a well typed program, if the type annotations are erased, then the program without
annotations will behave the same as the program with annotations. However, our operational semantics relies on
dynamic runtime checks based on type annotations when evaluating select. Therefore we cannot have a type erasure
property.

Future work includes implementing an interpreter for the language based on the operational semantics, and devel-
oping a minimal type inference algorithm [46] based on the type system.
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6. Discovering and Inferring Schema Information

The type system relies on a schema mapping that assigns types to URIs that can be used a properties. This schema
information ensures that if the URI is used as a property in a triple, then the object of the triple will conform to the
type information provided. The challenge is that schema are not guaranteed to be provided a priori. Furthermore,
published data may use inconsistent schema. We discuss how to extract and infer schema information using our type
system. We finish with a discussion on updating schema information in a live system.

Schema Extraction. Initially developing a schema can be a manual process requiring domain specific expertise. For-
tunately, many datasets, such a DBpedia and Open Graph, publish partial schema information. The type system can
be used to extract schema information embedded in data. Consider the following rules of our type system.

` datatype ≤ S (uri)

` uri rdfs:range datatype

` xsd:anyURI ≤ S (uri0)

` uri0 rdfs:range uri1

` xsd:anyURI ≤ S (uri)

` uri rdf:type owl:ObjectProperty

If the schema mapping S (uri) is known in advance, the above rules check that the new schema is consistent with
the existing schema. If, however, there exists no schema information for uri, we can use our type system to infer
the schema for S (uri). For example, from the triple dbp:foundationDate rdfs:range xsd:dateTime, we can infer the
constraint that xsd:dateTime ≤ S (dbp:foundationDate). Constraints can be solved to find the most general unifying
type that can be assigned to a property by a schema map.

Schema Inference. The type system can also be used to infer schema information when there is no schema information
available for a property. Consider an example where S (geo:lat) is unknown. We can assign a fresh variable X such
that S (geo:lat) = X, and unfold a proof tree for some data using geo:lat as follows.

` xsd:integer ≤ X

` 77: X

` dbpedia:Almaty geo:lat 77

xsd:decimal ≤ X

` 51.1801: X

` dbpedia:Astana geo:lat 51.1801

` dbpedia:Almaty geo:lat 77 . dbpedia:Astana geo:lat 51.1801

As with type inference, by solving the system of inequality constraints [51] we obtain that S (geo:lat) = xsd:double.
A novel technique enabled by our type system is that schema information can be inferred from queries and scripts.

Assume that we do not know S (foaf:name) and consider the following query.

select $x where

$y foaf:name $x .
$y dbp:placeOfBirth dbpedia:Kazakhstan .
regex ($x, ˆzhan)

By unfolding typing rules, we can derive the constraint S (foaf:name) ≤ xsd:string. Thus the programmer is not
constrained by missing schema information.

Resolving Inconsistent Schema. However, there can be inconsistencies in the inference process. Consider the follow-
ing data from DBpedia.

dbpedia:Rockmart, Georgia dbp:subdivisionName 1872 .
dbpedia:Rockmart, Georgia dbp:subdivisionName dbpedia:Polk County, Georgia .
dbp:subdivisionName rdf:type dbp:Place .

Assuming that S (dbp:subdivisionName) = Y , we infer the constraints xsd:integer ≤ Y and xsd:anyURI ≤ Y . In the
subtype system presented, there is no upper bound for xsd:integer and xsd:anyURI ; hence there is no solution to
these constraints. This is not a deficiency of our approach but a feature of working with Linked Data, where schema
cannot be fixed a priori.
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There are two approaches to the above scenario, where there is an inconsistency in the inferred schema. The first
is to use statistics or human intervention to resolve the inconsistency, causing some triples to be rejected. The second
is to enable a more expressive subtype system with union and intersection types [3]. A more complex type system
involving union types and top types is described in related work [34, 33]. Using union and intersection types requires
more of OWL [32] to be lifted to our type system. In this work, we deliberately choose a simpler type system.

Monotonic Schema Update. Finally, we consider the problem that schema information may be updated while a system
is live. Discovering new schema or relaxing schema information can always be done without breaking the system.
However, operations that change the schema, for example change S (dbp:subdivisionName) from xsd:anyURI to
xsd:integer, is an expensive transaction, that requires rechecking of data and scripts that explicitly involve the property.
Here we consider the monotonic case and leave specifying transactional schema updates as future work.

We define an ordering over schema partial maps such that new properties may be added and datatypes may be
relaxed.

Definition 6.1. S0 ≤ S1 if and only if, for all uri such that S0(uri) = datatype0, we have that also S1(uri) = datatype1
and ` datatype0 ≤ datatype1.

Notice that the above definition implies that the domain of S0 is a subset of the domain of S1, so more properties
may appear in S1.

The following proposition verifies that, if a schema is extended monotonically with respect to Defn. 6.1, then all
systems, hence all data and all scripts, remain well typed.

Proposition 6.2. If S0 ≤ S1, then if Γ ` system with respect to S0, then Γ ` system with respect to S1

Proof. The proof is by structural induction.
The relevant base case is the case for uris used as properties. Assume, with respect to schema S0, that Γ `

uri : range(datatype) holds. By the type rule for properties, this holds only if ` range(S0(uri)) ≤ range(datatype).
Now, since S0 ≤ S1, by definition it holds that ` S0(uri) ≤ S1(uri); hence, by contravariance of property types,
range(S1(uri)) ≤ range(S0(uri)). By Lemma 4.1, ` range(S1(uri)) ≤ range(datatype); from which we establish that
Γ ` uri : range(datatype), with respect to schema S1.

The relevant inductive case is the cases for triples with a specific URI as a property. Assume, with respect
to S0, that Γ ` term0 uri term1 . holds. By the rule for triples, this holds only if Γ ` term0 : xsd:anyURI and
Γ ` term1 : S0(uri). Since S0 ≤ S1, by definition it holds that ` S0(uri) ≤ S1(uri). Therefore, by Lemma 4.2,
Γ ` term1 : S1(uri) holds; from which we establish that Γ ` term0 uri term1 holds with respect to S1.

All other cases are immediate, since they do not involve the schema map. �

7. Related Work

We highlight three significant lines of related work: types and inference, domain specific scripting languages, and
consuming data from the Web.

This work discusses type inference in the context of Linked Data. This is related to, but not the same as inference
in the RDF Schema recommendation [11]. The formalisation of RDF Schema in [40], includes rules such as if
uri0 uri1 uri2 and uri1 rdfs:range uri3 and uri3 rdfs:subClassOf uri4, then uri2 rdf:type uri4. For type inference in
this paper, if we have a triple, say $x foaf:name $y and S (foaf:name) = xsd:string, then assuming that $y : Y , type
inference will generate the constraint Y ≤ xsd:string, which is similar to the above rule for RDF Schema. Despite
this similarity, inference in RDF Schema and type inference are not the same thing. Related work [42], discusses a
higher-order strata of types for formalising RDF Schema. We avoid the complexity of higher order types by assigning
all URIs the datatype xsd:anyURI.

Several domain specific languages have been proposed for working with Linked Data. ActiveRDF [41] can be
used as a data layer in Ruby. In ActiveRDF, as with our scripting language, queries are primitive enabling basic
features such as compile time syntax checking and tight integration with control flow. Data-Fu [50] is a domain
specific language that allows result of queries to be used tightly with HTTP requests, hence can be used for RESTful
data APIs. NautiLOD [24] embeds queries in paths and shares the aim of our scripting language to tightly couple
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navigation and querying of Linked Data. Note that our scripting language is a simple core language to exhibit type
inference techniques. Our type inference techniques can be extended to ActiveRDF, Data-Fu and other domain specific
language extensions.

This work focusses on the Linked Data consumer, which harvests data from the Web. Harvesting data from the
Web is an older problem than Linked Data, from which insight may be gleaned. An original problem for Google [12]
was to crawl the Web to discover documents. To discover enough data in reasonable time, Google required a dis-
tributed and fault tolerant system. For deciding when to revisit known data efficiently, metrics are required [16].
Concerns such as these can be built into a service which handles concerns such as concurrency, fault tolerance and
recrawling, while offering our scripting language as an interface. Consuming Linked Data is also related to classic
work on focussed crawling [15].

8. Conclusion

Linked Data enables processes to programmatically crawl the Web of Data, pulling data from diverse sources and
removing boundaries between datasets. The data pulled from the Web forms a local view of the Web of Data that is
tailored to a particular application. Motivated by the requirements of Web developers, we introduce a domain specific
high level language for consuming Linked Data.

Domain specific languages are designed at a level of abstraction that simplifies programming tasks in an appli-
cation domain. In our domain specific language, key operations such as queries are primitive, meaning that basic
syntactic checks can be performed. It is also easier to perform static analysis over a domain specific language. To ap-
peal to Web developers, we take care to design the syntax of the scripting language such that it resembles the SPARQL
recommendations.

We introduce a simple but useful type system for our language. The type system is based on fragments of the
SPARQL, RDF Schema and OWL recommendations that deal with simple data types. Types can statically identify
simple errors such as attempts to dereference a number, or attempts to match the language tag of a URI. For static type
checking of scripts, the data loaded into the system must be dynamically type checked to ensure that the correct term
appears as the object of a triple. The dynamic type checks do not impose significant restrictions on the data consumed,
due to techniques for extracting and inferring schema information. Furthermore, our type system is algorithmic, so
a minimal type inference algorithm can be used instead of manually adding type annotations, making programming
easier.

Many datasets, including data from DBpedia, conform to the constraints imposed by our type system. Further
weight is given to our design decisions by the Facebook Open Graph protocol, which demands typing at exactly the
level we deliver.
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