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Abstract. This paper describes an approach to the behavioural analysis
of sessions. The approach is made possible by the calculus of structures —
a deep inference proof calculus, generalising the sequent calculus, where
inference rules are applied in any context. The approach involves spec-
ifications of global and local sessions inspired by the Scribble language.
The calculus features a novel operator that synchronises parts of a pro-
tocol that must be treated atomically. Firstly, the calculus can be used
to determine whether local sessions can be compose in a type safe fash-
ion such that sessions are capable of successfully completing. Secondly,
the calculus defines a subtyping relation for sessions that allows causal
dependencies to be weakened while retaining termination potential. Con-
sistency and complexity results follow from proof theory.

1 Introduction

This work is the first to draw connections between a calculus that originates
in proof theory, namely the calculus of structures [9], and the static analysis of
sessions using session types [10, 12].

In many systems, a protocol is initiated by opening a session between the par-
ties involved. Participants in a protocol typically exchange a number of messages
before closing the session. Each session can be characterised by the types of mes-
sages exchanged and also the order in which messages are sent. Such information
can be captured in a session type. The session type declares a specification that
can be used for both static and runtime analysis of the protocol concerned.

On the other hand, the calculus of structure is a proof calculus that was orig-
inally discovered by studying non-commutative operators, i.e. operators, say op,
where A op B is not the same as B op A. Such operators are useful for express-
ing causal dependencies, such as the concept of A happening before B, which is
clearly a non-commutative concept. There are simple and natural connections
between the calculus of structures and session types that can be understood
immediately:

– The calculus of structures is a term rewriting system modulo an equational
theory [16]. Term rewriting systems modulo an equational theory are analo-
gous to reduction systems modulo a structural congruence as typically used



to express the operational semantics that govern the behaviour of session
types.

– A proof in the calculus of structures is a special derivation that may termi-
nate successfully. Session types can be used to analyse whether a family of
participants in a session may together successfully complete the session, in
which case they are multiparty compatible [5].

Further striking connections between session types and the calculus of structures
are forthcoming. In the paper [10], which initiated interest in session types,
Honda introduces the notion of a co-type, which respects the following properties
resembling De Morgan dualities:

∼(P &Q) = ∼P ⊕∼Q ∼(P ⊕Q) = ∼P &∼Q ∼(P ;Q) = ∼P ;∼Q

It is no secret that the first two De Morgan dualities above were inspired by
the additive operators with and plus (& and ⊕) of linear logic. Abramsky had
already suggested [1] that & and ⊕ could be interpreted as a external choice and
internal choice respectively.

More recently, proof theorists have independently devised proof calculi, by
using the calculus of structures [9], that exhibit the De Morgan duality for se-
quential composition above. Because the De Morgan dual of sequential compo-
sition is also sequential composition, it is considered to be a self-dual operator.
In this work, we argue that the self-dual non-commutative operator found in
session types and the self-dual non-commutative operator found in the calculus
of structures are essentially the same operator.

Section 2 introduces the running example of a simple two-phase commit
protocol in a language inspired by the session type based language Scribble.
The syntax of global and local types are defined as well as the projection from
global types to local types. Section 3 defines the semantics of local types in
the calculus of structures, and presents consistency and compatibility results.
Section 4 compares our work to the body of work bridging session types and
proof calculi, and highlights open problems.

2 A Core Calculus Inspired by Scribble

We begin with a concrete example of a ubiquitous protocol from distributed
computing. Two-phase commit (2PC) ensures the atomicity of a transaction
involving data persisted across distributed nodes. The language we introduce is
heavily influenced by the Scribble language [11], which can be used to specify the
global behaviour of the two-phase commit protocol. The Scribble language is an
implementation of multiparty asynchronous session types [12, 5], with a syntax
deliberately chosen to appeal to software engineers that uses curly braces for
disambiguation.

The example protocol is presented in Fig. 1. The protocol describes interac-
tions between three parties: a Client that initiates a transaction, a Leader that



par p begin (Payload) from Client to Participant
and l begin (Payload) from Client to Leader ;
prepare (Timestamp) from Participant to Leader ;
par c commit (Timestamp) from Leader to Client
and p commit (Timestamp) from Leader to Participant

Fig. 1. A global protocol for client driven two-phase commit.

coordinates the transaction, and a Participant that must coordinate with the
leader.

Global types of the form prepare (Timestamp) from Participant to Leader
mean that role Participant sends a message of type Timestamp to the role
Leader, using the channel prepare. A channel is assumed to be some messag-
ing middleware that the sender passes a message to, and the receiver listens on.
The type constructor par . . . and . . . represents the parallel composition of two
protocols. For example, in 2PC the leader sends commit timestamps to the Client
and Participant in parallel. The semi-colon represents sequential composition.
We assume that par takes higher operator precedence than semi-colon.

The variant of the Two Phase Commit protocol described in the global proto-
col is a client-driven two phase commit with one participant. The Client initiates
the protocol by sending a payload to the Leader and Participant. The leader and
the participant manage a disjoint range of keys associated with data. The pay-
load for the leader and the client contains updates to apply at each respective
node. When the participant receives the payload, the participant acquires locks
for the relevant data, logs the transaction, picks a timestamp that is greater than
the timestamp applied to any previous transaction, then sends the timestamp to
the leader. Upon receiving the prepare timestamp from the Participant and the
begin message from the Client, the leader locks its own data and picks a times-
tamp greater than the prepare timestamp from the Participant and greater than
the timestamp applied to any transaction at the Leader. The leader then logs its
own updates and the timestamp. Finally, the Leader notifies the Client and Par-
ticipant about the timestamp chosen for the whole transaction, the Participant
logs the timestamp and all locks are released.

Session types, such as Scribble, can be used for the design, implementation
and verification of distributed systems. A methodology for using session types is
as follows. Firstly, a systems analyst designs the global protocol, which describes
the message exchanges between all parties in a distributed system. Secondly, the
global protocol is automatically projected to local protocols, as presented in
Fig. 2 for 2PC, where local protocols specify permitted patterns of sends and
receives of messages for each role. Because the projection to local protocols is
performed automatically such that a certain semantics is respected, the systems
analyst knows that each local protocol is correct with respect to the global
protocol. Verified automation eliminates human error that can be introduced
when projection is performed manually using the intuition of the systems analyst.



Client:
par ∼p begin (Payload) to Participant
and ∼l begin (Payload) to Leader ;
commit (Timestamp) from Leader

Participant:
p begin (Payload) from Client ;
∼prepare (Timestamp) to Leader ;
p commit (Timestamp) from Leader

Leader: l begin (Payload) from Client ;
prepare (Timestamp) from Participant ;
par ∼p commit (Timestamp) to Participant
and ∼c commit (Timestamp) to Client

Fig. 2. Local types for roles Client, Participant and Leader projected from Fig. 1.

A local protocol can fulfil several roles in the software engineering process.
Firstly, a local protocol can be used as a reference for an engineer who is respon-
sible for implementing the node that performs the role described in the protocol.
Furthermore, the local protocol can be used to verify that the engineer’s imple-
mentation does indeed conform to the given protocol. For some languages, there
exist extensions [19, 15] that enable the code itself to be statically analysed. For
situations where there are either no static type checking tools or we do not have
access to the code, runtime monitors can be automatically generated that ob-
serve the behaviour of nodes while they execute to detect whether a protocol
violates its specification [14].

The syntax for global and local types is presented in Fig. 3. The syntax is
heavily influenced by the global and local protocols of Scribble [11], but with
some significant differences:

– We include a complementation operator over atoms, written as a tilde prefix,
where atoms represent the separate send and receive events. Atoms and their
complements interact to compose local protocols with channels.

– We also include a binary operator sync, which ensures that two events occur
atomically. Types joined by sync “appear” to happen simultaneously, using
separate resources, hence they cannot be interleaved. We use sync to capture
synchrony in the transport mechanism, but we envision that it can form an
extension to Scribble where complex atomic transactions are modelled.

Projection. The projection from global G to local types for a given role R is
defined as follows, written G �R.

(G0 ;G1) �R= (G0 �R) ; (G1 �R)
(par G0 and G1) �R= par (G0 �R) and (G1 �R)

c (S) from P to Q �R=

∼c (S) to Q ifP = R
c (S) from P ifQ = R
{} otherwise

(choice atP G0 or G1) �R=

{
(G0 �R) or (G1 �R) ifP 6= R
(G0 �R) & (G1 �R) ifP = R



S ::= int | string | S × S | . . . sorts

c channel P role

A ::= c (S) to P send to
| c (S) from P receive from
| ∼A complementation

G ::= c (S) from P to P values
| G ; G seq
| par G and G par
| choice atP G or G choice

T ::= {} unit
| A atom
| T ; T seq
| par T and T par
| sync T and T sync
| T or T internal choice
| T & T external choice

Fig. 3. Syntax of global types (G), local types (T ), atoms (A) and sorts (S).

The projection generates a local type for each role that appears in a global type.
Notice that send events are prefixed with the complementation operator, which
makes explicit the contravariant nature of sending on a channel [20] which we
explain further when we introduce subtyping in the next section.

For simplicity, we assume synchronous communication where messages are
received and delivered atomically. Channels are handled explicitly as special local
types defined by the following projection from global types to local types. The
projection below maps a message exchange to a send event synchronised with
a receive event. Notice that polarities of atoms, indicated by the compliment
operator, are opposite to atoms in the projection for roles.

d (S) from P to Q �c=

{
sync c (S) to Q and ∼c (S) from P if c = d
{} otherwise

(choice atP T or U) �c= (T �c) or (U �c)
(G0 ;G1) �c= par (G0 �c) and (G1 �c)

(par G0 and G1) �c= par (G0 �c) and (G1 �c)

Asynchronous channels and channels with queues of up to length two can also
be handled by this framework. We refer to [12] for constraints restricting the
order of events in asynchronous systems and avoiding races.

3 The Subtype System and Multiparty Compatibility

The semantics of local types is defined by a term rewriting system modulo an
equational theory. The semantics can be used to define both a subtype relation
over local types and the notion of multiparty compatibility.

The rewrite rules and equational theory are presented in Fig. 4. As standard
for term rewriting, the equations can be applied at any point in a derivation,
and the rules can be applied in any context, where a context C{ } is any local



type with one hole in which any local type can be plugged. Thus we have the
following implicit rules:

C{ T } −→ C{ U } only if T −→ U context closure

T −→ U only if T ≡ U congruence

We name the term rewriting system in Fig 4 multiplicative additive system
virtual (MAV) since our system combines systems multiplicative additive linear
logic with mix (MALL) [17] and basic system virtual (BV) [9], both of which are
consistent proof calculi. The equational system ensures that ; is a monoid and
par and sync are commutative monoids. We briefly explain the rewrite rules.

– The atomic interaction rules enable a negative atom and positive atom to
annihilate each other, whenever the carried sort of the negated atom is a
subsort of the carried sort of the positive atom. Assuming we have a sub-
sorting system, that defines any preorder, we extend the system atoms as
follows.

c (S0) to P ≤ c (S1) to P only if S0 ≤ S1
c (S0) from P ≤ c (S1) from P only if S0 ≤ S1

For example, the subsorting can be given by subtyping for XML Schema [2].
– The switch rule generalises the rule for the tensor product in linear logic.

The rule focusses a parallel composition on where an interaction takes place.
– The seq rule arises in the theory of pomsets [8]. The rule strengthens causal

dependencies to introduce a barrier across two parallel threads.
– The left choice and right choice rules represent an internal choice where

the protocol has control over the branch to select. The external choice rule,
represents when we cannot determine at compile time what branch will be
selected; hence must analyse both possibilities. The tidy rule simply acknowl-
edges when two branches in an external choice have successfully closed. The
medial is essential for the co-existence of seq and external choice.

We extend the complementation operator over atoms to all local types using
the following function that transforms a type into its co-type [10].

∼(P &Q) = ∼P or∼Q ∼(P orQ) = ∼P &∼Q

∼par T and U = sync ∼T and ∼U ∼sync T and U = par ∼T and ∼U

∼(T ; U) = ∼T ; ∼U ∼{} = {} ∼∼A = A

The above function transforms any local type into a local type in negation normal
form, where complementation applies only to atoms, as permitted by the syntax
in Fig. 3. We deliberately do not include complementation for arbitrary types
in the syntax for local types, since the contravariant nature of complementation
complicates the rewriting system without any gain in expressive power [9].

In the calculus of structures a proof is a special derivation that reduces to
the unit type {}, representing a successfully completed session.



par ∼A and B −→ {} only if A ≤ B atomic interaction

par { sync T and U } and V −→ sync T and { par U and V } switch

par { T ; U } and { V ; W } −→ { par T and V } ; { par U and W } seq

T or U −→ T left choice T or U −→ U right choice {}& {} −→ {} tidy

par T and { U & V } −→ { par T and U }& { par T and V } external choice

{ T ; U }& { V ; W } −→ { T & V } ; { U & W } medial

par { par T and U } and V ≡ par T and { par U and V }
sync { sync T and U } and V ≡ sync T and { sync U and V }

sync T and {} ≡ T par T and {} ≡ T

{ T ; U } ; V ≡ T ; { U ; V } {} ; T ≡ T T ; {} ≡ T

par T and U ≡ par U and T sync T and U ≡ sync U and T

Fig. 4. Term rewriting system modulo an equational theory for local types.

Definition 1. If for any type T −→ {}, according to the term rewriting system
in Fig. 4, then we write ` T , and say that T is provable.

The following result is a generalisation of a consistency result called cut elimi-
nation that appears commonly in proof theory.

Theorem 1. Suppose that there is a proof using the extra rules:

– par ∼T and T −→ {} (interact)
– {} −→ sync ∼T and T (co-interact)

Given such a proof, a new proof can be constructed that uses only the rules in
Fig. 4. We say that the rules interact and co-interact are admissible.

The main results in this paper are corollaries of the above proof-theoretic result.
The proof of Theorem 1 involves a technique known as splitting introduced in [9].
Choice operators, known as additives, are handled using techniques similar to
Theorem 6 in [4], for which we require the following notion of a killing context.

Definition 2. A killing context T { ·, ·, . . . , · } is an n-ary context such that

T { } ::= { · } | T { }& T { }

where { · } is a hole into which any local type can be plugged.

The splitting lemma below simulates sequent calculus style rules in a context
where the root formula is a parallel composition. The proof of the splitting
lemma is quite involved, so receive special attention in a companion paper [13].



Lemma 1 (Splitting). The following statements hold.

– For any atom A, if ` par ∼A and T , then there exist atoms B1,B2,. . . ,Bn

such that A ≤ Bi for 1 ≤ i ≤ n and n-ary killing context T { } where
T −→ T { B1, B2, . . . , Bn }.

– For any atom A, if ` par A and T , then there exist atoms B1,B2,. . . ,Bn

such that Bi ≤ A for 1 ≤ i ≤ n and n-ary killing context T { } where
T −→ T { ∼B1,∼B2, . . . ,∼Bn }.

– If ` par {T & U} and V , then ` par T and V and ` par U and V .
– If ` par {T or U} and V , then there exist local types Wi such that either
` par T and Wi or ` par U and Wi, for 1 ≤ i ≤ n, and n-ary killing context
T { } where V −→ T { W1,W2, . . . ,Wn }.

– If ` par { sync S and T } and U , then there exist local types Vi and Wi

such that ` par S and Vi and ` par T and Wi, for 1 ≤ i ≤ n, and n-ary
killing context T { } where U −→ T { par V1 and W1, . . . , par Vn and Wn }.

– If ` par {S ; T } and U , then there exist local types Vi and Wi such that
` par S and Vi and ` par T and Wi, for 1 ≤ i ≤ n, and n-ary killing
context T { } where U −→ T { V1 ;W1, V2 ;W2, . . . , Vn ;Wn }.

The above splitting result is key to solving two further lemmas, the proof of
which are provided in a companion paper [13]. Hence, in the interest of focusing
on the relevance of MAV to sessions, we provide only statements of the lemmas.

Lemma 2 (Context reduction). If, for any type V , ` par T and V yields
` par U and V , then, for any context C{ }, ` C{ T } yields ` C{ U }.

The following result, shows that rules complimentary to those that appear in
Fig. 4 can be eliminated. By a complementary rule, or co-rule, we mean a rule
where the direction of rewriting is reversed and co-typing is applied to both
local types in the rewrite rule. The proof follows from splitting and the context
lemma.

Lemma 3 (Co-rule elimination). The following statements hold.

– If ` C{ sync A and ∼B }, where A ≤ B, then ` C{ }.
– If ` C{ sync { T ; U } and { V ;W } },

then ` C{ { sync T and V } ; { sync U and W } }.
– If ` C{ T & U }, then ` C{ T }.
– If ` C{ T & U }, then ` C{ U }.
– If ` C{ sync T and { U or V } },

then ` C{ { sync T and U } or { sync T and V } }.
– If ` C{ {} or {} }, then ` C{ }.
– If ` C{ { P ; Q } or { R ; S } },

then ` C{ { P or R } ; { Q or S } }.

Theorem 1, follows from the above result, by induction on the size of the lo-
cal type in any interaction or co-interaction rule. Thereby we have established
the consistency of the system MAV. The following section, demonstrates why
consistency of a calculus is more than a theoretical curiosity.



3.1 A Subtyping Relation for Sessions

We use the semantics of local types to define a subtype relation over local types.

Definition 3. For local types T and U , if ` par ∼T and U , then T ≤ U ,
pronounced T is a subtype of U .

From Theorem 1 we immediately establish that subtyping is consistent in the
following sense.

Corollary 1. Subtyping is a precongruence: a reflexive, transitive relation that
holds in any context.

Consider the running 2PC example. The Leader local protocol in Fig 2 is a
subtype of the following local protocol Leader′.

par prepare (Timestamp) from Participant
and l begin (Payload) from Client ;
par ∼p commit (Timestamp) to Participant
and ∼c commit (Timestamp) to Client

The difference between the local types for Leader and Leader′ is that Leader′

waits for the l begin and prepare messages in parallel. Thus Leader; can poten-
tially consume the prepare message before consuming the l begin message, which
is not possible in Leader.

Subsorting. The use of subsorts allows us to recover a classic property of sub-
typing for channel types [20]: send types are contravariant and receive types are
covariant. Immediately, from the atomic interaction rules we obtain, that if S0 ≤
S1, then both ∼c (S1) to P ≤ ∼c (S0) to P and c (S0) from P ≤ c (S1) from P
hold. Notice that the complementation operator prefixing the send event induces
the expected contravariance. For example, in 2PC the sender may send a natu-
ral number timestamp, when an integer timestamp was expected, assuming that
nat ≤ int is in the subsorting system. This agrees with related work [20] on
subtyping with respect to I/O types for channels.

Subtyping for choice. The subtype system derived from the extended calculus,
reflects existing work on session subtyping involving choice [6]. Consider the
extended two phase commit example, with local types Leader′′, Participant′,
and Client′ in Fig. 5. Note that par, sync and semi-colon are assumed to have
a higher precedence than & and or.

The example local types Leader′′ and Client′ involve an external choice.
The local type Leader′′ has a choice that allows an abort message to be received
from the participant, at which point the client must be notified about the abort.
The client has the choice of receiving the commit message or receiving the abort
message.

The local type Leader′′ is a super-type of the local type Leader, since
Leader′′ can always (internally) choose the left branch of the choice in the
protocol. Similarly, the local type Client′ is a super-type of Client.



Client′ :

par ∼p begin (Payload) to Participant
and ∼l begin (Payload) to Leader ;
{ commit (Timestamp) from Leader
or

c abort (Error) from Leader }

Participant′ :

p begin (Payload) from Client ;
{ ∼prepare (Timestamp) to Leader ;

p commit (Timestamp) from Leader
&
∼p abort (Error) to Leader }

Leader′′ : l begin (Payload) from Client;
{ prepare (Timestamp) from Participant ;
par ∼p commit (Timestamp) to Participant
and ∼c commit (Timestamp) to Client
or

p abort (Error) from Participant ;
∼c abort (Error) to Client }

Fig. 5. Example of roles in a commit protocol with the choice to abort.

Now consider the local type Participant′. In contrast to Leader′′ and
Client′, the local type Participant′ is not a supertype of Participant. This
contrast is due to the presence of external choice rather than internal choice. An
external choice is used since we cannot determine at compile-time whether the
participant will commit or abort; hence both branches must be analysed.

3.2 Multiparty Compatibility

The semantics of local types in Fig. 4 can also be used to determine whether a
session can successfully close, without hanging sends or receives. The following
definition is the essence of the idea of multiparty compatibility in [5].

Definition 4 (Multiparty compatibility). If T1, T2, . . .Tn are local types
such that par T1 and T2 . . . and Tn is provable, then T1, T2, . . .Tn are said to
be multiparty compatible.

The following example, due to Tiu [21], emphasises that we could not express
multiparty compatibility using natural deduction.

Role P : ∼begin (Data) to Q ;
{
par ∼fun (Control) to Q
and done (Data) from Q
}

Role Q : {
par begin (Data) from P
and fun (Control) from P
} ;
∼done (Data) to P

Notice that the causal dependency forced by role Q between receiving a message
on channel fun and sending a message on channel done, induces a dependency at
role P ; specifically the send on fun must happen before the receive on done. In



the proof of multiparty compatibility, this dependency is imposed by applying a
rule, within sequential composition structure, within a par structure. Application
of rules in a context alternating between structures is known as deep inference.
Natural deduction, traditionally used to express type systems, cannot express
the scenario above.

The projection of any global type onto its local types for each participant
and channel is multiparty compatible.

Lemma 4. For any G with set of roles and channels I, the multiset of local
types (G �i)i∈I is multiparty compatible.

Proof. The proof is by induction on the structure of G. The only base case is
c (S) from P to Q, for which the following rewrites hold using switch and atomic
interaction.

par G �P and G �Q and G �c =
par ∼c (S) to Q and c (S) from P and { sync c (S) to Q and ∼c (S) from P }

−→ sync { par ∼c (S) to Q and c (S) to Q } and
{ par ∼c (S) from P and c (S) from P } −→ {}

Hence the local types G �P , G �Q, G �c are multiparty compatible.
Consider the case of sequential composition. Assume that G0 and G1 are

multiparty compatible and consider G0 ;G1. Hence for i1, i2, . . . ∈ I. By repeated
application of the seq rule and the induction hypotheses.

par { (G0 ;G1) �i1 } and { (G0 ;G1) �i2 } and . . .
= par { G0 �i1 ;G1 �i1 } and { G0 �i2 ;G1 �i2 } and . . .
−→ par G0 �i1 and G0 �i2 and . . . ; par G1 �i1 and G1 �i2 and . . .
−→ {}

Hence G0 ;G1 is multiparty compatible.
Consider the case of choice. Assume that G0 and G1 are multiparty com-

patible and consider choice atP G0 or G1. Hence for i1, i2, . . . ∈ I \ {P}. By
repeated application of the external choice, left choice, right choice and the in-
duction hypotheses.

par (choice atP G0 or G1) �P and (choice atP G0 or G1) �i1 and . . .
= par { G0 �P & G1 �P } and { G0 �i1 or G1 �i1} and . . .
−→ par G0 �P and { G0 �i1 orG1 �i1 } and . . .

& par G1 �P and { G0 �i1 orG1 �i1 } and . . .
−→ par G0 �P and G0 �i1 and . . . & par G1 �P and G1 �i1 and . . .
−→ {} & {} −→ {}

Hence choice atP G0 or G1 is multiparty compatible.
The inductive case for parallel composition is similar. Hence the result follows

by induction on the structure of G. ut

A consequence of the above lemma is that the family of all projections from the
global type in Fig. 1 is multiparty compatible.

Subtyping allows local protocols to be weakened while retaining multiparty
compatibility. The following lemma is an immediate consequence of Corollary 1.



Lemma 5. If T1, T2, . . . , Tn are multiparty compatible, and Ti ≤ Ui, for 1 ≤
i ≤ n, then U1, U2, . . .Un are multiparty compatible.

We now introduce the notion of coherence, which defines families of local
protocols and channels, that respect a global type.

Definition 5. A multiset of local types (Ti)i∈I , where I is a set of roles and
channels, is coherent (with respect to G) if there exists a global type G such that
for all i ∈ I, G �i≤ Ti, where ≤ is the subtyping relation.

The protocol based on Tiu’s counter example is coherent with respect to the
following global type.

begin (Data) from P to Q ;
fun (Function) from P to Q ;
done (Data) from Q to P

Notice that, if type equality rather than subtyping is used in the definition of
coherence, then Tiu’s counter example is not coherent. Thus subtyping relaxes
the corresponding definition in [12].

The proof of the following proposition follows from Lemma 4 and Lemma 5.

Proposition 1. Any coherent protocol is multiparty compatible.

Proof. Assume that (Ti)i∈I is coherent. Hence there exists G such that for all
i ∈ I, G �i≤ Ti. By Lemma 4, the multiset of of protocols (G �i)i∈I is multiparty
compatible. Furthermore, by Lemma 5, since for all i ∈ I, G �i≤ Ti, (Ti)i∈I is
also multiparty compatible. ut

The converse of Proposition 1 is more difficult, since given only the local pro-
tocols, we must construct, or synthesise, a global protocol given only the local
types. In general synthesis of a global protocol is not possible [5], hence an open
question is the following: under what conditions is a multiparty compatible fam-
ily of local protocols is coherent.

The protocols Client, Leader′, Participant are coherent, since the defini-
tion of coherence permits subtyping. However they are also coherent with respect
to the global protocol below.

par { p begin (Payload) from Client to Participant ;
prepare (Timestamp) from Participant to Leader }

and l begin (Payload) from Client to Leader ;
par c commit (Timestamp) from Leader to Client
and p commit (Timestamp) from Leader to Participant

The global type above is more general than the global type in Fig. 1, with respect
to the subtyping relation over global types defined below.

Definition 6. For global types G0 and G1 with set of participants and channels
I, if for all i ∈ I, G0 �i≤ G1 �i, then G0 ≤ G1.



Following [18], we say that the most general coherent global protocol, with re-
spect to the above subtyping relation, with respect to the multiset of protocols,
is the principal global type for that multiset of local protocols. Hence the above
global type is the principal global type for Client, Leader′, Participant.

For the local protocols Client′, Leader′′ and Participant′ from Fig. 5, the
principal global type is as follows.

par p begin (Payload) from Client to Participant
and l begin (Payload) from Client to Leader ;
choice at Participant
{ prepare (Timestamp) from Participant to Leader ;
par c commit (Timestamp) from Leader to Client
and p commit (Timestamp) from Leader to Participant }

or { p abort (Error) from Participant to Leader ;
c abort (Error) from Leader to Client }

Notice that, since subtyping for external choice and internal choice are dual
to each other, there is no subtype relationship between the global type above
and the global type in Fig. 1. Subtyping of global protocols should preserve
coherence.

Proposition 2. If (Ti)i∈I is coherent with respect to G1 and G0 ≤ G1, then
(Ti)i∈I is coherent with respect to G0.

The proof follows immediately from the definitions.

Asynchronous sessions. Assume that we use asynchronous communication chan-
nels, where a send message event happens before the corresponding receive mes-
sage event, and furthermore the order messages are received are not related to
the order in which messages are sent. The projection to asynchronous channels
is the same as the projection for synchronous channels except the following case.

d (S) from P to Q�c =

{
sync c (S) to Q ; ∼c (S) from P if c = d
{} otherwise

We can establish that, for protocols that use synchronous channels and can suc-
cessfully complete, the protocols can successfully complete using asynchronous
channels in place of synchronous channels. This observation follows immediately
from Lemma 4, Corollary 1, and the observation that sync T and U ≤ T ; U .

Corollary 2. If G is a global protocol, where I is the set of roles and chan-
nels appearing in G, then using asynchronous channels, (G�i)i∈I is multiparty
compatible.

However, the converse does not hold. There exist sessions that may successfully
complete using asynchronous channels, that can never complete successfully us-
ing synchronous channels. The methodology in this work can also be adapted
to evaluate the termination potential of protocols where channels are queues of
length up to two, for which stronger guarantees on the order in which messages
are receive on channels are guaranteed [12].



3.3 Complexity and a path to implementation

Deciding provability in the calculus MAV is a PSPACE-complete problem. This
complexity bound can be established directly from existing results. In particular,
since the calculus extends MALL which is PSPACE-hard [17], there is a trivial
polynomial reduction from MALL to MAV, i.e. the direct embedding of proposi-
tions, such that a proposition is provable in MALL if and only if its embedding
is provable in MAV. Furthermore, by the argument in [17], the length of each
independent branch in a proof is polynomial.

Proposition 3. The problem of deciding whether a local type in MAV is provable
is PSPACE-complete.

A consequence of the above complexity result is provability of local types
in MAV can be reduced to QBF, the canonical PSPACE-complete problem, for
which sufficiently efficient solvers exist. Thereby properties of sessions, such as
multiparty compatibility, can be verified for protocols of a realistic size.

4 Related Work and Conclusion

Correspondences between session types and variants or extensions of linear logic
have been studied in related work. The study of the “proofs as processes” inter-
pretation of intuitionistic linear logic using the linear λ-calculus was initiated
by Abramsky [1], and has been adapted explicitly to asynchronous sessions [7].
An alternative approach due to Caires and Pfenning [3] assigns propositions in
intuitionistic linear logic to channel names, where the proposition represents the
session performed on the named channel. Wadler [22] brings light to the lin-
ear λ-calculus and channel approaches, by proving that a variant of the linear
λ-calculus can be translated faithfully into a process calculus and type system
where propositions in (classical) linear logic are assigned to channel names. In
both the intuitionistic [3] and classical [22] interpretations, intuitively, the tensor
product is interpreted asymmetrically as follows: “A⊗B is the type of a channel
that outputs an A and then behaves as B.” Both approaches argue that the
symmetry of the tensor product can be recovered using an isomorphism induced
by a process that flips the order of actions.

We make a different choice. We interpret sequentiality using an explicit non-
commutative operator. This relieves the commutative operators so that they can
be used to model symmetric features such as parallel composition. For the cal-
culus in this work, the results presented, notably the consistency of subtyping
(Corollary 1) and the multiparty compatibility of coherent protocols (Proposi-
tion 1), follow directly from the proof theoretic result in Theorem 1. Thus, by
adopting the calculus of structures to express the semantics of local types, we
reduce several problems in session types to a generalised cut elimination result.
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