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1 INTRODUCTION

This paper investigates the proof theory of a novel pair of de Morgan dual nominal quantifiers.
These quantifiers are motivated by the desire to model private name binders in processes by
embedding the processes directly as formulae in a suitable logical system. The logical system in
which this investigation is conducted is sufficiently expressive to soundly embed the finite fragment
of several process calculi.
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A requirement of directly embedding processes as formulae is that the logic should be able to
capture causal dependencies. To do so, we employ a non-commutative multiplicative operator,
which can be used to model the fact that ‘a happens before b’ is not equivalent to ‘b happens before
@’. Such non-commutative operators are problematic for traditional proof frameworks such as the
sequent calculus; hence we adopt a formalism called the calculus of structures [21, 22, 48, 52, 53].
The calculus of structures permits more proofs than the sequent calculus, by allowing inference
rules to be applied in any context; while still satisfying proof theoretic properties, notably cut
elimination. An advantage of the calculus of structures is that it can express proof systems combining
connectives for sequentiality and parallelism. The calculus of structures was motivated by a need
for understanding why pomset logic [45] could not be expressed in the sequent calculus. Pomset
logic is inspired by pomsets [44] and linear logic [18], the former being a model of concurrency
respecting causality, while the latter can be interpreted in various ways as a logic of resources and
concurrency [11, 31, 56].

These observations lead to the propositional system MAV [23] and its first-order extension
presented in this work, named MAV 1. Related work establishes that linear implication in such logical
systems is sound with respect to both pomset ideals [25] and weak simulation [26]. These results
tighten results in initial investigations concerning a minimal calculus BV and trace inclusion [8].
Hence reasoning using linear implication is sound with respect to most useful (weak) preorders
over processes, for a range of languages not limited to CCS [39] and 7-calculus [41].

This paper resolves the fundamental logical problem of whether cut elimination holds for MAV1.
Cut elimination, the corner stone of a proof system, is essential for confidently recommending
a proof system. In the setting of the calculus of structures, cut elimination is formalised quite
differently compared to traditional proof frameworks; hence the proof techniques employed in
this paper are of considerable novelty. Furthermore, this paper is the first paper to establish cut
elimination for a de Morgan dual pair of nominal quantifiers in any proof framework. These
nominal quantifiers introduce intricate interdependencies between other operators in the calculus,
reflected in the technique of splitting (Lemma 4.19) which is the key lemma required to establish
cut elimination (Theorem 3.3).

Logically speaking, nominal quantifiers I and 3, pronounced ‘new’ and ‘wen’ respectively, sit
between V and 3 such that Vx.P — Ux.P and Ux.P — 9x.P and 9x.P —o 3x.P, where —o is linear
implication. The quantifier 1 is similar in some respects to V, whereas 3 is similar to 3. A crucial
difference between 3x.P and 9x.P is that variable x in the latter cannot be instantiated with arbitrary
terms, but only ‘fresh’ names introduced by 1. Our new quantifier 1, distinct from the Gabbay-Pitts
quantifier, addresses limitations of established self-dual nominal quantifiers for modelling private
names in embeddings of processes as formulae. In particular, our 1 quantifier does not distribute
over parallel composition in either direction. In MAV1, the formulae Ux.(event(x) % event(x))
and Ux.event(x) #® Ux.event(x) are unrelated by linear implication. This property is essential for
soundly modelling private name binders in processes.

Outline. For a new logical system it is necessary to justify correctness, which we approach
in proof theoretic style by cut elimination. Section 2 illustrates why an established self-dual
nominal quantifier [16, 17, 38, 43] is incapable of soundly modelling name restriction in a processes-
as-formulae embedding. Section 3 defines MAV1, explains cut elimination and discusses rules.
Section 3.4 presents an explanation of the rules for the nominal quantifiers. Section 4 presents
technical lemmas and the splitting technique which is key to cut elimination. Section 5 presents
a context lemma which is used to eliminate co-rules that form a cut; thereby establishing cut
elimination. Section 6 explains the complexity classes for various fragments of MAV1.
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The cut elimination result in this article was announced at CONCUR 2016 [27], without full proofs.
This journal version of the paper explains the cut elimination proof, elaborates on the motivating
discussion, and highlights further corollaries of cut elimination. Since 1 is a Cyrillic vowel, we use
another Cyrillic vowel 3 for nominal quantifier 'wen’. This Cyrillic vowel is pronounced as the
hard e in ‘wen’ and reminds the reader of its existential nature.

Due to the space limitation, some proofs are omitted in the printed version of this article, but are
available in the accompanying Electronic Appendix.

2 WHY NOT A SELF-DUAL NOMINAL QUANTIFIER?

Nominal quantifiers in the literature are typically self-dual in the sense of de Morgan dualities. That
is, for a nominal quantifier, say V, “not Vx P” is equivalent to “Vx not P.” Such self-dual nominal
quantifiers have been successfully introduced in classical and intuitionistic frameworks, typically
used to reason about higher-order abstract syntax with name binders. Such nominal frameworks
are therefore suited to program analysis, where the semantics of a programming language are
encoded as a theory over terms in the logical framework.

Rather surprisingly, when processes themselves are directly embedded as formulae in a logic,
where constructs are mapped directly to primitive logical connectives (as opposed to terms inside a
logical encoding of the semantics of processes), self-dual quantifiers do not exhibit typical properties
expected of name binders. To understand this problem, in this section we recall an established
calculus BVQ [46] that can directly embed processes but features a self-dual nominal quantifier.
We explain that such a self-dual quantifier provides an unsound semantics for name binders. This
motivates the need for a finer polarised nominal quantifier, which leads to the calculus introduced
in subsequent sections.

We assume the reader has a basic understanding of the semantics of the n-calculus [41] and
CCS [39]. This section provides necessary preliminaries for the calculus of structures.

2.1 An established extension of BV with a self-dual quantifier

An abstract syntax for formulae and the rules of BVQ are defined in Fig 1. In an inference rule, the
formula appearing above the horizontal line is the premise and the formula below the horizontal
line is the conclusion. The key feature of the calculus of structures is deep inference, which is
the ability to apply all rules in any context, i.e. formulae with a hole of the following form:
C{}tu={-}IC{}oP|POC{ }|Vx.C{ }, where © € {<,%, ®}.

Inference rules are defined modulo a structural congruence, where a congruence is an equivalence
relation that holds in any context. A derivation is a sequence of rules from Fig. 1, where the structural
congruence can be applied at any point in a derivation. The length of a derivation involving only
the structural congruence is zero. The length of a derivation involving one inference rule instance

is one. Given a derivation i of length m and another Q of length n, the derivation % is of length

m + n. Unless we make it clear in the context that we refer to a specific rule, this horizontal line
notation is generally used to represent derivations of any length. For example, since Vx.o = o,
L = .. (P3R)e(Q75). . .
derivation Vx.o of length 0, and derivation —————————is of length 2, since two instances of
(P2Q)®R=S
switch are applied.

The congruence, = in Fig. 1, makes par and times commutative and seq non-commutative in
general. For the nominal quantifier V, the congruence enables: a-conversion for renaming bound
names; equivariance which allows names bound by successive nominal quantifiers to be swapped;
and vacuous that allows the nominal quantifier to be introduced or removed whenever the bound

variable does not appear in the formula. As standard, we define a freshness predicate such that a
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Structural rules Syntax
(P,%,°) and (P, ®,°) are commutative monoids Pu=o (unit)
a (atom)
(P, <,°) is a monoid a-conversion for V quantifier a (co-atom)
Vx.P (nabla)
Vx.Vy.P = Vy.Vx.P (equivariance) P# P (par)
_ . P &P (times)
Vx.P = P only if x # P (vacuous) PP (seq)
Inference rules
° Pz S
% (atomic interaction) %T% (switch)
C{(P3R)<(Q07S)} (sequence) C{Vx.(P®Q)} (anify)
C{P-Q)7([R=5)} 1 C{VxPAvxQ} iy

Fig. 1. Syntax and rules of system BVQ [46]: which is BV extended with a self-dual nominal quantifier.

variable x is fresh for a formulae P, written x # P, if and only if x is not a member of the set of free
variables of P, where Vx.P binds occurrences of x in P.

Consider the syntax and rules of BVQ in Figure 1. The three rules atomic interaction and switch and
sequence define the basic system BV [21] that also forms the core of the system MAV1 investigated
in later sections. The only additional inference rule for V is called unify.

Atomic interaction. The atomic interaction rule should remind the reader of the classical
tautology —a V « or intuitionistic axiom @ = «, applied only to the predicates forming the atoms of
the calculus. Since there is no contraction rule for %, once atoms are consumed by atomic interaction
they cannot be reused. Thus atomic interaction is useful for modelling communication in process,
where @ models a receive action or event and @ is the complementary send, which cancel each
other out.

Switch and sequence. The atomic interaction and switch rules together provide a model for
multiplicative linear logic (with mix) [18]. The difference between % and ® is that % allows interac-
tion, but ® does not. In this sense the switch rule restricts where which atoms may interact. The
seq rule also restricts where interactions can take place, but, since seq is non-commutative, it can
be used to capture causal dependencies between atoms. The sequence rule preserves these causal
dependencies, while permitting new causal dependencies. In terms of process models, the sequence
rule appears in the theory of pomsets [19] and can refine parallel composition to its interleavings.

Unify. The novel rule for BVQ is unify for nominal quantifier V. The unify rule should be admis-
sible in a well-designed extension of linear logic with a self-dual quantifier. To see why, consider the
following auxiliary definitions. Observe that the following definition of linear implication ensures
that V is self-dual in the sense that the de Morgan dual of V is V itself. Similarly, seq and the unit
are self-dual, while ® and % are a de Morgan dual pair of operators.

Definition 2.1. Linear negation is defined by the following function over formulae.
s=o a@=a PeQ=P%Q P~3Q=PeQ P<Q=P<Q Vx.P=VxP
Linear implication, written P —o Q, is defined as Px Q.

We are particularly interested in special derivations, called proofs.
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Definition 2.2. A proof is a derivation of any length with conclusion P and premise .. When such
a derivation exists, we say that P is provable, and write + P holds.

As abasic property of linear implication + P — P must hold for any P. Now assume that - Q — Q
is provable in BVQ (hence, by the above definitions, there exists a derivation with conclusion
O % Q and premise ©), and consider formula Vx.Q. Using the unify rule and the definition of linear
implication, we can construct the following proof of - Vx.Q — Vx.Q.

°_ by the vacuous rule

# by the assumption F Q % Q
Vx. (Q 3 Q)

Vx.0 % Vx.Q

The above illustrates why unify should be admissible in order to guarantee reflexivity — the most
basic property of implication — for an extension of BV with a self-dual nominal quantifier. In the
next section, we explain why the unify rule is problematic for modelling processes as formulae.

by the unify rule

2.2 Fundamental problems with a self-dual nominal for embeddings of processes

Initially, it seems that desirable properties of name binding, typical of process calculi, are achieved
in BVQ. For example, we expect that if x # Q then - Vx.(P % Q) — Vx.P % Q, indicating that
the scope of a name can be extruded as long as another name is not captured, which is provable
using the vacuous and unify rules. The equivariance rule that swaps name binders is also a property
preserved by most equivalences over processes.

Another strong property of BVQ, expected of all nominal quantifiers, is that we avoid the
diagonalisation property. Diagonalisation  Vx.Vy.P(x, y) —o Vz.P(z, z) holds in any system with
universal quantifiers, as does the converse for existential quantifiers. However, for nominals such
at V, neither Vx.Vy.P(x,y) —o Vz.P(z, z) nor its converse Vz.P(z,z) —o Vx.Vy.P(x,y) hold. This
is a critical feature of all nominal quantifiers that ensures that distinct fresh names in the same
scope never collapse to the same name, and explains why universal and existential quantifiers
are not suited modelling fresh name binders. It is precisely the absence of diagonalisation for
nominals that is used in classical [16, 43] and intuitionistic frameworks [17, 38] to logically manage
the bookkeeping of fresh name in, so called, deep embeddings of processes as terms in a theory.
Avoiding diagonalisation is sufficient in such deep embeddings since nominal quantifiers cannot
appear inside a term representation of a process, so are always pushed to the outermost level where
formulae are used to define the operational semantics of processes as a theory over process terms.

Soundness criterion. The problem with BVQ is that when processes are directly embedded as
formulae V quantifiers may appear inside embeddings of processes, which can result in unsound
behaviours. To see why the unify rule induces unsound behaviours consider the following -
calculus terms. vx.(zx | x) is a -calculus process that can output a fresh name twice, once on
channel z and once on channel y; but cannot output two distinct names in any execution. In contrast,
observe that vx.zx | vx.yx is a z-calculus process that outputs two distinct fresh names before
terminating, but cannot output the same name twice in any execution. As a soundness criterion,
since the processes vx.(zx | yx) and vx.zx | vx.yx do not have any complete traces in common,
these processes must not be related by any sound preorder over processes.

Now consider an embedding of these processes in BVQ, where the parallel composition op-
erator of the m-calculus is encoded as par and v is encoded as V. This gives us the formulae

Vx. (act(z, x) % act(y, x)) and Vx.act(z, x) ® Vx.act(y, x). Note that output action prefixes are en-

coded as negated predicates, e.g., zx is encoded act(z, x).
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Observe that + Vx. (act(z, x) ® act(y, x)) —o Vx.act(z, x) ® Vx.act(y, x) is provable, as follows.
Vx.o
Vx. (act(y, x) % act(y, x))

Vx. ((act(z, x) % act(z, x)) ® (act(y, x) % act(y, x)))

by vacuous
by atomic interaction

by atomic interaction

by switch

Vx. (((act(z, x) % act(z, x)) ® act(y, x)) % act(y, x)
by switch

Vx. ((act(z, x) ® act(y, x)) % act(z, x) % act(y, x))
by unify

Vx.(act(z, x) ® act(y, x)) ¥ Vx. (act(z, x) % act(y, x))

by unify

Vx.(act(z, x) ® act(y, x)) ® Vx.act(z, x) ¥ Vx.act(y, x)

The above implication is unsound with respect to trace inclusion for the 7-calculus. The implication
wrongly suggests that the process vx.zx | vx.yx, that cannot output the same names twice, can be
refined to a process vx.(zx | yx), that outputs the same name twice. This is exactly the contradiction
that we avoid by using polarised nominal quantifiers investigated in subsequent sections.

As a further example of unsoundness issues for a self-dual nominal, consider the following
criterion: an embedding of a process is provable if and only if there is a series of internal transitions
leading to a successful termination state. A successful termination state is a state without any
unconsumed actions. Now consider the process vx.(x.y) | vz.z | ¥ in process calculus CCS [39].
We can attempt to embed this process in BVQ as Vx.(event(x) < event(y)) # Vz.event(z) % event(y),
where event(x) is a unary predicate representing an event identified by variable x. This embed-
ding violates our soundness criterion. Under the semantics of CCS the process is immediately
deadlocked; hence none of the four actions are consumed. However, the embedding is a provable
formula, by the following derivation.

o

by atomic interaction and vacuous
Vx. (event(y) 3 event(y))

by atomic interaction
Vx. ((event(x) 3 event(x)) < (event(y) 3 event(y)))

by sequence

Vx. ((event(x) <event(y)) (event(x) < event(y)))

by sequence

Vx. ((event(x) <event(y)) ¥ event(x) ¥ event(y)

by vacuous and unify

Vx. ((event(x) <event(y)) ¥ event(x)) % event(y)

by unify and a-conversion

Vx.(event(x) < event(y)) ® Vz.event(z) ¥ event(y)

The above observations lead to a specification of the properties desired for a nominal quantifier
suitable for direct embeddings of processes as formulae. We desire a nominal quantifier, say 1,
such that properties such as no diagonalisation, equivariance and extrusion hold except that also
neither Ux.(P % Q) — Ux.P ¥ Ux.Q nor Ux.P 3 Vx.Q —o Ux.(P % Q) hold in general. Also, by
the arguments above the quantifier cannot be self-dual; and hence, as a side effect, we expose
another nominal quantifier, called “wen”, denoted 3, that is de Morgan dual to U. The rest of this
paper is devoted to establishing that indeed there does exist a logical system with such a pair of
nominal quantifiers.
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x a variable Pu=o (unit)
a (atom)
¢ a constant a (co-atom)
) Vx.P (all)
f afunction symbol Ix.P (some)
. Nx.P (new)
dicat bol
p a predicate symbo 3P (wen)
t o= x (variable) P &P (with)
c (constant) PeoP (plus)
f(t,...t) (n-ary function) P3P (par)
P ® P (times)
a == p(t,...t) (n-ary predicate) P (seq)

Fig. 2. Syntax for MAV1 formulae.

(P,%,°) and (P, ®,°) are commutative monoids and (P, <,°) is a monoid.

Ux.Ny.P = Ny .Ux.P 9x.9y.P = 9y.9x.P (equivariance)

Fig. 3. Structural congruence (=) for MAV1 formulae, plus a-conversion for all quantifiers.

3 INTRODUCING A PROOF SYSTEM WITH A PAIR OF NOMINAL QUANTIFIERS

Soundness issues associated with a self-dual nominal quantifier in embeddings of processes as
formulae, can be resolved by instead using a pair of de Morgan dual nominal quantifiers. This
section introduces a proof system for such a pair of nominal quantifiers, building on the core
system BV, further extended with: additives useful for expressing non-deterministic choice; and
first-order quantifiers which range over terms not only fresh names. Investigating the pair of
nominal quantifiers in the presence of these operators is essential for understanding the interplay
between nominal quantifiers and other operators, showing that this pair of nominal quantifiers can
exist in a system sufficiently expressive to embed rich process models. This section also summarises
the main proof theoretic result, although lemmas are postponed until later sections.

3.1 The inference rules and structural rules

We present the syntax and rules of a first-order system expressed in the calculus of structures, with
the technical name MAV1. The derivations of the system are defined by the abstract syntax in Fig. 2,
structural congruence in Fig. 3, and the inference rules, in Fig 4. We emphasise that, in contrast to
the sequent calculus, rules can be applied in any context, i.e. MAV1 formulae from Fig. 2 with a
hole of the form

C{}={-}|C{}oP|PocC{ }|Ox.C{ }, where® € {+,%,8,& o} and O € {3,V,H, 3}.
We also assume the standard notion of capture avoiding substitution of a variable for a term. Terms
may be constructed from variables, constants and function symbols.

To explore the theory of proofs, two auxiliary definitions are introduced: linear negation and
linear implication. Notice in the syntax in Fig. 2 linear negation applies only to atoms.
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C{-} C{P=Q)eS}

Claval (atomic interaction) WQ@S)} (switch)

C{P3U)<(Q=3V)}
C{P-Q)mU=<V)}

(sequence)

C{(P3S)&(Q7S)} (external) C{(P&U)<(Q&V)}
C{(P&Q)®S} C{(P<Q)&U-<V)}
C{-} C{P} C{0}

C{o&o} C{PeQ} C{PeQ}

(medial)

(left) (right)

(tidy)

C{Vx.(P3R)} d C{Vx.P<Vx.S}
C{vxP~R} (eXtrudel) C{Vx.(P<5)}

c{} C{P{'s}}

C{vaoy YD C{3xP}

(mediall)

(selectl)

C{WUx.(P3R))} . C{Vx.P<Ux.5 }
Cl{Ux PRy ¥tudenew) oo 5 o)

Lo} idynamey  SUA(PTO}
C{lxo) Y C{Ux.P79x.0}

(medial new)

(close)

C{UxP} o b C{9y.Mx.P} c{Oy.vxP}
claxry "M Glmeayry "V c{veoyr)

Clox(PO9)} (o o CLPOR} (o C{(ROO)
C{oxPooxs} oWP C{ox.POR} C{ROx.0}

c{Ox.(P«S)} 0 c{Ox.(P&«R) } eft C{Ox.(R&Q) }
C{Dx.P&Dx.S} (with name) C{Dx.P&R} (left name) C{R&Dx.Q}

(all name)

(right wen)

(right name)

where O € {H1,3}, © € {#,<} and x # R, in all rules containing R

Fig. 4. Rules for formulae in system MAV1. Notice the figure is divided into four parts. The first part defines
sub-system BV [21]. The first and second parts define sub-system MAV [23].

Definition 3.1. Linear negation is defined by the following function from formulae to formulae.

Linear implication, written P —o Q, is defined as P Q.
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Linear negation defines de Morgan dualities. As in linear logic, the multiplicatives ® and % are
de Morgan dual; as are the additives & and e, the first-order quantifiers 3 and V, and the nominal
quantifiers I and 3. As in BV, seq and the unit are self-dual.

A basic, but essential, property of implication can be established immediately. The following
proposition is simply a reflexivity property of linear implication in MAV1.

PROPOSITION 3.2 (REFLEXIVITY). For any formula P, + P % P holds, i.e,+ P —o P.

The proof of the above follows by a straightforward induction over the structure of P.

3.2 Intuitive explanations for the rules of MAV1.

We briefly recall the established system MAV, before explaining the rules for quantifiers. This paper
focuses on necessary proof theoretical prerequisites, and hints at result for process embeddings in
MAV1. Details on the soundness of process embeddings appear in a companion paper [26].

The additives. The rules of the basic system BV in the top part of Fig. 4 are as described
previously in Section 2. The first and second parts of Fig. 4 define multiplicative-additive system
MAV [23]. The additives are useful for modelling non-deterministic choice in processes [1]: the left
rule % suggests we chose the left branch P or alternatively the right branch Q by using the

(P3R)&(Q3R)
(P&Q)=R
separately; and the tidy rule indicates a derivation is successfully only if both branches explored
are successful. The medial rule is a partial distributivity property between the additives and seq (in
concurrency theory, this is a property expected of most preorders over processes). The role of the
additives as a form of internal and external choice has been investigated in related work [13].

The first-order quantifiers. The rules for the first-order quantifiers in the third part of Fig. 4
follow a similar pattern to the additives. The select1 rule allows a variable to be replaced by any
term. Notice we stick to the first-order case, since variables only appear in atomic formulae and
may only be replaced by terms. The extrudel, tidy1 and mediall rules follow a similar pattern to
the rules for the additives external, tidy and medial respectively. In process embeddings, first-order
quantifiers are useful as input binders. For example we can soundly embed the z-calculus process
yz | y(x).Xw | z(x) as the following provable formula:

right rule; the external rule suggests that we try both branches P % R and Q % R

o

by atomic interaction
act(z, w) % act(z, w)

by select1
act(z, w) ® Jv.act(z, v)

((m % act(y, z)) < M) % Ju.act(z, v)

by atomic interaction

by sequence
act(y,z) » (act(y, z) <act(z, w)) % Ju.act(z, v)

by select1
act(y, z) ¥ 3Ix. (act(y, x) <act(x, w)) % Jv.act(z, v)

Notice, that the above process can also reach a successfully terminated state using 7 transitions in
the 7-calculus semantics. Indeed the cut elimination result established in this paper is a prerequisite
in order to prove this soundness criterion holds for finite 7-calculus processes.

The polarised nominal quantifiers. The rules for the de Morgan dual pair of nominal quanti-
fiers are more intricate. For first-order quantifiers many properties are derivable, e.g., the following
implications hold (appealing to Prop. 3.2): + Vx.Vy.P —o Vy.Vx.P, + Jx.Vy.P — Vy.3x.P and
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F Vx.(P % Q) —o Vx.P % 3x.Q. The three proofs proceed as follows.

Vy.Vx.o Vx.Vy.o Vx.o
Vy.Vx.(l_”?P) Vx.\/y.(l_“?P) VX-(PW Q 75’P7?Q)
Vy.Vax. (ax.ay.ﬁ 3 P) V. Vy. (ay.ﬁ 3 ax.P) Vx. (HX- (1_’ @ @) 3PA 3X-Q)
Ix.3y.P 3 Vy.Vx.P Vx.3y.P % Vy.3x.P 3x.(1_3 ® @) % Vx.P 3 3x.Q

We desire analogous properties for the nominals 11 and 9. However, in contrast to first-order
quantifiers, these properties must be induced for our pair of nominals. The first property is induced
for 11 and 3 by equivariance in the structural congruence. The other rules analogous to the above
derived implications are induced by the rules: new wen, which allow a weaker quantifier 9 to
commute over a stronger quantifier 1; and close which models that 3 can select a name as long as
it is fresh as indicated by U.

We avoid new distributing over %, i.e., in general neither Vx.(P % Q) — Mx.P % Ux.Q nor
Ux.P % Ux.Q — Ux.(P % Q) hold. Hence U is suitable for embedding the name binder v of the
m-calculus. Interestingly, the dual quantifier 3 is also useful for embedding a variant of the 7-
calculus called the zI-calculus, where every communication creates a new fresh name. For example,
rl-calculus process 0[x].x[y] | v[z].z[w] can be embedded as the following provable formula.!

o

Nx.Aw.o
Ux.Aw. (act(x, w) % act(x, w))

by tidy name
by atomic interaction

by close
Ux. (Sy.act(x, y) ¥ Uw.act(x, w))

by atomic interaction
Ux. ((act(v, x) % act(v, x)) < (Sy.act(x, y) ¥ Uw.act(x, w)))

I/Ix.((m < Jy.act(x, y)) 3 (act(v, x) < I/IW.M)) by sequence

by close and a-conversion
Ux. (act(v, x) < Jy.act(x, y)) % Iz. (act(v, z) < Uw.act(z, w))

Note that a-renaming is implicitly applied in the derivation above.

There is no vacuous rule in Fig. 2, in contrast to the presentation of BVQ in Fig. 1. This is because
the vacuous rule creates problems for proof search, since arbitrarily many nominal quantifiers can
be introduced at any point in the proof leading to unnecessary infinite search paths. Instead we
build the introduction and elimination of fresh names into rules only where required. For example,
extrude new is like close with a vacuous 3 implicitly introduced; similarly, for left wen, right wen,
left name and right name a vacuous 9 is implicitly introduced. Also the tidy name allows vacuous
U operators to be removed from a successful proof in order to terminate with o only. The reason
why the rules medial new, suspend, all name and with name are required are in order to make
cut elimination work; hence we postpone their explanation until after the statement of the cut
elimination result.

In addition to forbidding the vacuous rule, the following restrictions are placed on the rules to
avoid meaningless infinite paths in proof search.

o For the switch, sequence, mediall, medial new and extrude new rules, P # o and S # o.

! To disambiguate from the sr-calculus we use square brackets as binders for the 7 I-calculus. So D[x].P denotes a process
that outputs a fresh name x and v[x].P denotes a process that receives a name x only if it is fresh.
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e The medial rule is such that either P # o or R # o and also either Q £ cor S % o.
o The rules external, extrudel, extrude new, left wen and right wen are such that R # o.

Avoiding infinite search paths is important for the termination of our cut elimination procedure.
Essentially, we desire that our system for MAV1 is in a sense analytic [9].

Note on term “medial”. Medials were introduced, historically, to make contraction local (reducing
contraction to a rule acting only over atoms) [7]. Although the rules in Fig. 4 do not define such a
local system, we discovered these rules by first defining a local system, and then designing a more
controlled system retaining only the medials of the local system that are not admissible. Related
work [54] shows that medials are a ubiquitous recipe underlying the rules of proof systems.

3.3 Cut elimination and its consequences

This section confirms that the rules of MAV1 indeed define a logical system, as established by a
cut elimination theorem. Surprisingly, prior to this work, the only direct proof of cut elimination
involving quantifiers in the calculus of structures was for BVQ [46]. Related cut elimination results
involving first-order quantifiers in the calculus of structures relied on a correspondence with the
sequent calculus [6, 50]. However, due to the presence of the non-commutative operator seq there
is no sequent calculus presentation [53] for MAV1; hence we pursue here a direct proof.

The main result of this paper is the following, which is a generalisation of cut elimination to the
setting of the calculus of structures.

THEOREM 3.3 (CUT ELIMINATION). For any formula P, if v C{ PeP } holds, then+ C{ o } holds.

The above theorem can be stated alternatively by supposing that there is a proof in MAV1

extended with the extra inference rule: { Pep }
C{o

constructed that uses only the rules of MAV{1. 131 this formulation, we say that cut is admissible.
Cut elimination for the propositional sub-system MAV has been previously established [23]. The

current paper advances cut-elimination techniques to tackle first-order system MAV1, as achieved

by the lemmas in later sections. Before proceeding with the necessary lemmas, we provide a

corollary that demonstrates that one of many consequences of cut elimination is indeed that linear

implication defines a precongruence — a reflexive transitive relation that holds in any context.
COROLLARY 3.4. Linear implication defines a precongruence.

(cut) Given such a proof, a new proof can be

Proof. For transitivity, if - P —o Q and F Q —o R hold, we have the following.

(ﬁ 3 Q) ® (5 3 R)
(ﬁ@(Q®§)@ﬂ

Hence, by Theorem 3.3, - P —o R as required.
For contextual closure, if - P —o Q holds, we have the following.

o

C{P}=®nC{P}

C{P}?yC{Pea(?'zyQ) }

C{P}??C{ (mﬁ) %’Q}

Hence by Theorem 3.3, C{ P } —o C{ Q } as required. Reflexivity holds by Proposition 3.2. O

by the assumptions - P % Q and - Q ® R

by the switch rule

by Proposition 3.2

by the assumption + P — Q

by the switch rule
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3.4 Discussion on logical properties of the rules for nominal quantifiers

The rules for the nominal quantifiers new and wen require justification. The close and tidy name
rules ensure the reflexivity of implication for nominal quantifiers. Using the extrude new rule (and
Proposition 3.2) we can establish the following proof of  9x.P —o Jx.P.

ﬁ by the tidy name rule
—————— by Proposition 3.2
. (P P)
— by the select1 rule
Ux.(3x.P 7 P)
———— by the extrude new rule

Jx.P 3 Ux.P
The above also serves as a proof of the dual statement + Vx.P —o Wx.P.
Using the fresh rule we can establish the following implication + Nx.P —o 9x.P, as follows.

o

——— by Proposition 3.2
Vx.P % Ox.P by the fresh rule
9x.P 3 9x.P
This completes the chain + Vx.P — Ux.P,  Ix.P — 39x.P and + 3x.P —o Jx.P. These linear
implications are strict unless x # P, in which case, for O € {V, 3,1, 3}, Ox.P is logically equivalent
to P. For example, using the fresh rule followed by the extrude new and tidy name rules, - Ix.P — P
holds, whenever x # P. Thus the implication corresponding to the vacuous rule as in Fig. 1 is provable
for any quantifier.
The medial rules for nominals. The medial new rule is particular to handling nominals in the
presence of the self-dual non-commutative operator seq. To see why this medial rule cannot be
excluded, consider the following formulae, where x is free for atoms f, y, ¢ and (.

(¢ <3x.(fy) e (0 <Ix.(e6<)) —o(a<Tx.f<Tx.y)®(§ <TIx.e <Tx.0)
(¢ <TFx.f<Txy)®(§<Ix.e <Tx.{) —o (@ <3x.f) ® (5 <Tx.€)) < (Tx.y ® Ix.{)

Without using the medial new rule, the above formulae are provable. The first is as follows.
m by tidy name

((5 3 a) -« I/Ix((ﬂ) (S« y))) ® ((3 3 5) < I/Ix(ﬁ % (e« {)))

((E ® ) < I/Ix((B < Y) % (Ix.p« Elx.y)) ® ((3 3 5) “ I/Ix.((E “ Z) % (dx.c « 3x§)))

)
((a 3 q) < (I/Ix. (/_3 - y) ¥ (Ax.f « Elx,y))) extrude

® (((57? 5) . (m.(z«Z) % (Ix.e = ax.g)))

by Proposition 3.2

select1

(@1 (Fer)) 7@ 3ep-3ep) o (-t (7)) 7@ T30
(a< Hx-(ﬁﬁ)) 3 (3<Hx.(§<f)) % (a+3x.f<Tny) © (5 < In.e < Ix.L) switch
The proof of the second formula above is as follows.
- by Prop. 3.2

((a <Ix.f)e(d<Ix.e)® ((a<Ix.f)e(d« Elx.e))) < (W B (Ixye 3x.§))
((a - vx.ﬁ) 5 (3 . Vx.E)) ; (vx.y 3 Vx.Z) % (@ +3x.f) & (8 « Ix.) < (Fxy © Ix.0)

(5 < Vx.B < Vx.?) 3 (5 <Vx.€ < Vx.Z) B ((@<3Ix.p) (5 <Ix.¢)) < (Tx.y ® Ix.0)

by sequence

by sequence
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However, the issue is that the following formula would not be provable without using the medial
new rule; hence cut elimination cannot hold without the medial new rule.

(¢ <3x.(f<y)) @ (8 <3x.(6<()) —o (¢ <TIx.f) ® (J < Ix.¢)) < (Ix.y ® Ix.{)

In contrast, with the medial new rule the above formula is provable, as verified by the proof in
Figure 5. Notice the above proofs use only the medial new, extrude new and tidy name rules for
nominals. These rules are of the same form as rules mediall, extrudel and tidy1 for universal
quantifiers, hence the same argument holds for the necessity of the mediall rule by replacing 1
with V.

o

(Vx.o @ Vx.o) < (Vx.o @ Vx.o)
(((a % @) « Ux. (/3 7?[3)) ((37? 5) U g))) . (Hx.(yw v ®Mx.(Z7s> g))
(((a ¥ @) < Ux. (ﬁ % 3x. /3)) e ((5 3 5) <Ux.(F % Ix. g))) « (I/Ix.(7 3 3x.y) © I/Ix.(Z%? 3x.§))
(((a % q) « (I/Ix.B ¥ Jx. )) ® ((5 3 5) (UxF ™ E!x.s))) ; ((I/Ix.y % 3x.y) © (I/Ix.Z 3 3x.§))
(((a «Wx. /3) % (o « 3. ,B)) ((5 < Wx. g) 3 (5 < Ix. g))) - ((I/Ix.?78’ ) e (I/Ix.Z%’ ax.g))
((a . Mx.B) 3 (S . I/Ix.E) % (o < 3x.f) @ (6 = 3x.£))) ’ (Mx.y FUx.L 3 (Axy @ 3x.§))
((a . Hx.B) 3 (S . I/Ix.E)) - (I/Ix.y 3 Hx.Z) % (@ < 3x.f) ® (8 « Fx.e) « (Fxy © Ix.0)
(a <Ux.f < Hx.y) » (3 <Ux.E < Hx.Z) % (@ +3x.f) ® (6 < Fx.e)) « (Fx.y © Ix.)

(E<I/Ix. <B<?)) 2] (3 < Ux. (E<Z)) B ((@<3x.p) @ (5 <3x.€)) < (Tx.y ® Ix.0)

Fig. 5. A proof of (@ <3x.(f <y)) ® (6 <3x.(6 <)) —o ((@ < Ix.f) ® (5 <Tx.€)) < (Fx.y ® Ix.{)

Including the medial new rule forces the suspend rule to be included. To see why, observe that
the following linear implications are provable.

(Mx.a <Ux.p) @ Nx.y «Ux.5) — Ux.(a < f) ® Ux.(y <I)
Vx.(a < f) @ Vx.(y = 8) — Ux.((a < f) © (y +6)

However, without the suspend rule the following implication is not provable, which would contradict
the cut elimination result of this paper.

(Ux.a «Ux.B) ® (Ux.y «Ux.5) — Ux.((a < f) & (y <J))

Fortunately, including the suspend rule ensures that the above implication is provable as follows.

o

ax.((a<ﬁ) % (y«S)) 3 Vx.((a < f) © (y <))
ax.(a <B) 2 Sx.(Y - 3) 3 V(o « f) @ (y < 6))

(ax.a . ax.ﬁ) B (ax.y - ax.S) 3 Ux.((a < f) e (y <8))

A similar argument justifies the inclusion of the left wen and right wen rules.

by Proposition 3.2

by suspend

by suspend
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Rules induced by equivariance. Interestingly, equivariance is a design decision in the sense
that cut elimination still holds if we drop the equivariance rule from the structural congruence.
For such a system without equivariance, also the rules all name, with name, left name and right
name could also be dropped. Perhaps there may be interesting applications for a non-equivariant
nominal quantifiers; however, for embedding of process such as v in the 7-calculus, equivariance

is an essential property for scope extrusion. For example, equivariance is used when proving the

embedding of labelled transition vx.vy.zy.p —» EUN vx.p, assuming z # x and z # y.

In our embedding of the z-calculus in MAV1, addressed thoroughly in a companion paper [26],
we assume process p is embedded as formula P. In this case, process vx.vy.zy.p maps to Q =

Ux.Ny. (act(z, y) < P), process vx.p maps to R = Ux.P. In this embedding of processes as formulae,
we can prove that whenever the above labelled transition is enabled, we can prove the following
implication Uy. (act(z, y) < R) —o Q, where the binder My and atom act(z, y) indicate that the process

can commit to a bound output. Indeed this formula is provable, as follows, by using equivariance.

i I/I by tidy name

by Proposition 3.2
Ny. ( (act(z, y) % act(z, y)) < (I/Ix.P % Ux.P

— by extrude new
Ny. (act(z y) ¥ Ux.act(z, y)) (Sx.P R I/Ix.P)

by sequence

by medial new

(
Ny. ((act(z y) < Ox. P) (I/Ix.act(z, y) < I/Ix.P))
y.

u ((act(z, y) < Sx.P) % Ux. (m < P))

Jy. (act(z, y) < 9x.ﬁ) % Uy Ux. (act(z, y) < P)

by close

— by equivariance
Jy. (act(z, y) < 3x.P) % Ux.Uy. (act(z, y) < P)

In response to the above problem, modelling the 7-calculus, MAV1 includes equivariance.

The equivariance rule forces additional distributivity properties for 1 and 3 over & and V, given
by the all name, with name, left name, right name rules. These rules allow 11 and 9 quantifiers
to propagate to the front of certain contexts. To see why these rules are necessary consider the
following implications, with matching formulae, respectively, after and before the implication.

FUx.(Uy.Vz.a 3 y.(f &y)) — UxMy.Vz.a ¥ Ix.9y.(f & y)
F UxUy.Vz.a 3 Ix.9y.(f & y) — Uy.Vz.Wx.a ¥ Jy.(9x.f & Ix.y)

Any proof of the second implication does involve equivariance; but neither proof requires all name
or with name. A proof of the first implication above is as follows.

Sx.(Sy.Hz.E ® I/Iy(ﬁ @ 7)) c’:?I/Ix.(I/Iy.Vz.oz % Jy.(f&y))

9. (ay.az.a & Uy. (E o 7)) » Vx.Ay.Yz.a % 9x.9y.(B & y)

by Proposition 3.2

by close

A proof of the second implication above is given in Figure 6.
By the implications above, if cut elimination holds, it must be the case that the following is
provable.

Ux.(MyVz.a 3 dy.(f & y)) — Uy.Vz.Wx.a 3 Jy.(dx.f & Dx.y)
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o

1y.Vz.Vx.o ® My.(Fx.o & [x.o)

Uy.Vz x.(@ 7 ) & Ay. (I/Ix. (E 7? [3) & Ux.(7 y))

My ¥z Mx.@ @) o My (Wix. (B o7) 7 ) e 1ix. (B o7) 7))
Wy.Vz.Wx.(@ ¥ a) ® Uy. ((I/Ix (ﬁ o y) 3 ax.ﬁ) & (I/Ix. (E o y) 3 Sx.y))

Ny Vz.Ux.(a % &) ® I/Iy.(I/Ix.(ﬁ ® ?) 3 (Ox.p& Sx.y))

by tidy name and tidy1

by atomic interaction

by left and right

by close

by external

— by equivariance and close
Uy VzUx.(a? a) @ (I/Ix.I/Iy.(ﬂ ® ?) % Jy.(Ax.f & Sx.y))

— by select1
Ny VzUx.(Aza T a)® (I/Ix.I/Iy.(ﬁ ® 7) % Jy.(Ax.f & Sx.y))

— by close
Ny Vz.(9x.3z.a 3 Ux.a) ® (I/Ix.I/Iy.(/)’ @ 7) % Jy.(Ax.f & Sx.y))

— by extrudel
Uy.(9x.3z.a 3 Vz.Ux.a) ® (I/Ix.I/Iy.(,B ® ?) %3 Jy.(dx.f & Sx.y))

— by equivariance and close
(9x.9y.3z.a ® Uy .Vz.Ux.a) ® (I/Ix.I/Iy.(,B ® 7) % Jy.(Ox.f & 3x.y))

— by switch
(Sx.Sy.Elzﬁ ® I/Ix.I/Iy.(ﬂ ® Y)) % Uy .Vz.Ux.a % Jy.(dx.f & Ix.y)

Fig. 6. A proof of Ux.Uy.Vz.a B 9x.9y.(f & y) — Uy.Vz.x.a ¥ Jy.(3x.f & Ix.y)

However, without the all name and with name rules, the above implication is not provable and
hence cut elimination would not hold in the presence of equivariance. Fortunately, using both the
all name and with name rules the above implication is provable, as follows.

o

9. (ay.az.a o Uy. (B o y)) 3 Wx.(My.Vz.a 3 9y.(f & y))

by Proposition 3.2

— by close
Sx.(ay.ﬂz.ﬁ ® I/Iy(ﬁ ® ?)) 3 Ux.Ny Vz.a 3 9x.9y.(f &y)

— with name and equivariance
9x.(9y.32.§ ® I/Iy(ﬁ ® ?)) % Ux Ny .Vz.a ¥ Jy.(9x.f & Ix.y)

— all name and equivariance
Sx.(Sy.Elz.E ® I/Iy(ﬁ ® ?)) 3 Uy VzWx.a 3 Dy.(dx.f & Dx.y)

A similar argument justifies the necessity of the left name and right name rules.

Polarities of the nominals. As with focussed proof search [2, 12], assigning a positive or
negative polarity to operators explains certain distributivity properties. Consider %, &, V and U to be
negative operators, and ®, ®, 3 and 3 to be positive operators, where seq is both positive and negative.
The negative quantifier U distributes over all positive operators. Considering positive operator
tensor for example, + Ux.a ® Ux.f — Ux. (@ ® f) holds but the converse implication does not hold.
Furthermore, 9x.a ® 9x.f and 9x. (a ® ) are unrelated by linear implication in general. Dually,
for the negative operator par the only distributivity property that holds for nominal quantifiers is
F 9x.(a ¥ f) — Ix.a ¥ Ix.f. The new wen rule completes this picture of new distributing over
positive operators and wen distributing over negative operators. From the perspective of embedding
name-passing process calculi in logic, the above distributivity properties of new and wen suggest
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that processes should be encoded using negative operators 1 and % for private names and parallel
composition (or perhaps dually, using positive operators 9 and ®), so as to avoid private names
distributing over parallel composition, which we have shown to be problematic in Section 2.

The control of distributivity exercised by new and wen contrasts with the situation for universal
and existential quantifiers, where 3 commutes in one direction over all operators and V commutes
with all operators in the opposite direction, similarly to the additive ® and & which are also
insensitive to the polarity of operators with which they commute. In the sense of control of
distributivity [4], new and wen behave more like multiplicatives than additives, but are unrelated
to multiplicative quantifiers in the logic of bunched implications [42].

4 THE SPLITTING TECHNIQUE FOR RENORMALISING PROOFS

This section presents the splitting technique that is central to the cut elimination proof for MAV 1.
Splitting is used to recover a syntax directed approach for sequent-like contexts. Recall that in the
sequent calculus rules are always applied to the root connective of a formula in a sequent, whereas
deep inference rules can be applied deep within any context. The technique is used to guide proof
normalisation leading to the cut elimination result at the end of Section 5.

There are complex inter-dependencies between the nominals new and wen and other operators,
particularly the multiplicatives times and seq and additive with. As such, the splitting proof is
tackled as follows, as illustrated in Fig. 7:

o Splitting for the first-order universal quantifier V can be treated independently of the other
operators; hence a direct proof of splitting for this operator is provided first as a simple
induction over the length of a derivation in Lemma 4.2. Splitting for all other operators are
dependent on this lemma.

e Due to inter-dependencies between U, 9, ®, < and &, splitting for these operators are proven
simultaneously by a (huge) mutual induction in Lemma 4.19. The induction is guided by an
intricately designed multiset-based measure of the size of a proof in Definition 4.15. The
balance of dependencies between operators in this lemma is, by far, the most challenging
aspect of this paper.

e Having established Lemma 4.2 and Lemma 4.19, splitting for the remaining operators 3 and
@ and the atoms can each be established independently of each other in Lemmas 4.20, 4.21
and 4.22 respectively.

Splitting 3
(Lemma 4.20)

/

Splitting V. ____ Splitting 1,9, ®,<,& ___ Splitting & - Section 5
(Lemma 4.2) (Lemma 4.19) Lemma 4.21)

Sphttmg a,a (Lemma 4.22)

Fig. 7. The proof strategy: dependencies between splitting lemmas leading to cut elimination.

ACM Transactions on Computational Logic, Vol. 0, No. 0, Article 0. Publication date: July 2019.



De Morgan Dual Nominal Quantifiers Modelling Private Names in Non-Commutative Logic 0:17

4.1 Elimination of universal quantifiers from a proof

We employ a trick where universal quantification V receives a more direct treatment than other
operators. The proof requires closure of rules under substitution of terms for variables, established
as follows directly by induction over the length of a derivation using a function over formulae.

P v
LEMMA 4.1 (SUBSTITUTION). If we have derivation g then we have derivation inéx;
X
We can now establish, the following lemma directly, which is a co-rule elimination lemma. By
C{P{°k}} C{Vvx.P}

a co-rule, we mean that, for select rule , there is complementary rule

C{3x.P} C{P{%}}
where the direction of inference is reversed and the formulae are complemented. Such a co-rule
can always be eliminated from a proof, in which case we say co-select1 is admissible, as established

by the following lemma.
LEMMA 4.2 (UNIVERSAL). If+ C{ Vx.P } holds then, for all terms v, + C{ P{%/x} } holds.

A corollary of Lemma 4.2 is: if - Vx.P®Q then + P{Y/,} % Q, where y # (Vx.P % Q). This corollary
is in the form of a splitting lemma, where we have a principal connective V at the root of a formula
inside a context of the form { - } # Q. This corollary of the above lemma should remind the reader
of the (invertible) sequent calculus rule for universal quantifiers:

FP{Y}T

FVx.P,T

We discuss, the significance of splitting lemmas after some preliminary lemmas required for the
main splitting result.

where y is fresh for Vx.P and all formulae in T

4.2 Killing contexts and technical lemmas required for splitting

We require a restricted form of context called a killing context (terminology is from [12]). A killing
context is a context with one or more holes, defined as follows.

Definition 4.3. A killing context is a context defined by the following grammar.
K o=KL P&} Ve K} | A KA}

In the above, { - } is a hole into which any formula can be plugged. An n-ary killing context is a
killing context in which n holes appear.

For readability of large formulae involving an n-ary killing context, for n > 1, we represent the
holes using a comma-separated list, so for example, instead of writing K{-}{-}, we write K{ -, - } for
a binary context. Given an n-ary killing context K{ ... }, we write K{ Q1,...,Qp } to denote the
formula obtained by filling the holes in the context with formulas Qy, . . ., Q,. We also introduce the
notation K{ Q;: 1 < i < n } as shorthand for K{ Q1,0,,...,0p }; and K{ Q;: i € I } for a family
of formulae indexed by finite subset of natural numbers I.

A killing context represents a context that cannot in general be removed until all other rules
in a proof have been applied, hence the corresponding tidy rules are suspended until the end of a
proof. A killing context has properties that are applied frequently in proofs, characterised by the
following lemma.

LEMMA 4.4. For any killing context K{ },+ K{ o,...,o } holds; and, assuming the free variables
of P are not bound by K{ }, we have derivation
K{P=®Q,P®Q,,...P%Q, } .
P7§’7<'{ Q19Q29-~'Qn }
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Killing contexts also satisfy the following property that is necessary for handling the seq operator,
which interacts subtly with killing contexts.

LEMMA 4.5. Assume that I is a finite subset of natural numbers, P; and Q; are formulae, fori € I,
and K{ } is a killing context. There exist killing contexts K°{ } and K'{ } and sets of natural
numbers ] C I and K C I such that the following derivation holds:

K{P:jeJ}<K{Qx:keK}
(]({Pi<Qi:iEI}
The following lemma checks that wen quantifiers can propagate to the front of a killing context.

Similarly, to the proof of the lemma above, the proof is by induction on the structure of a killing
context, applying the all name, new wen, with name, left name or right name rule, as appropriate.

LEMMA 4.6. Consider an n-ary killing context K{ } and formulae such that x # P; and either
P; = 9x.Q; or P; = Q;, for1 < i < n. If for some i such that1 < i < n, P; = 9x.Q;, then we have
xK{Q1,Q2,...,0n }

K{Pw.Ps...Pn}

To handle certain cases in splitting the following definitions and property is helpful. Assume
defines a possibly empty list of variables yi, s, . . ., y, and Of.P abbreviates Oy;.0ys. ... Oy,.P.
Let § # P hold only if y # P for every y € 3. By induction over the length of Z we can establish the
following lemma, by repeatedly applying the close, fresh and extrude new rules.

Uz.(P 3 Q) p UzZ.(P = Q)
an .
91y.P 3 UZ.Q Wij.P 3 3Z.Q

derivation

LEMMA 4.7. If§ C Z and Z # Dij.P, then we have derivations

4.3 An Affine Measure for the Size of a Proof.

As an induction measure in the splitting lemmas, we employ a multiset-based measure [14] of the
size of a proof. An occurrence count is defined in terms of a multiset of multisets. To give weight to
nominals, a wen and new count is employed. The measure of the size of a proof, Definition 4.15,
is then given by the lexicographical order induced by the occurrence count, wen count and new
count for the formula in the conclusion of a proof, and the derivation length of the proof itself.
In the sub-system BV [21], the occurrence count is simply the number of atom and co-atom
occurrences. For the sub-system corresponding to MALL (multiplicative-additive linear logic) [48],
i.e. without seq, a multiset of atom occurrences such that |(P & Q) ¥ R|,.. = |[(P ® R) & (Q % R)| e
is sufficient, to ensure that the external rule does not increase the size of the measure. The reason
why a multiset of multisets is employed for extensions of MAV [23] is to handle subtle interactions
between the unit, seq and with operators. In particular, by applying the structural rules for units,
suchthat C{ P& Q } = C{ (P <°) & (c < Q) } and the medial rule, we obtain the following inference.

C{(P&o)<(-4Q)}
C{P&Q}
In the above derivation, the units cannot in general be removed from the formula in the premise;

hence extra care should be taken that these units do not increase the size of the formula. This
observation leads us to the notion of multisets of multisets of natural numbers defined below.

by the medial rule

Definition 4.8. We denote the standard multiset disjoint union operator as W, a multiset sum
operator defined such that M+ N = {m + n: m € M and n € N}. We also define pointwise plus and
pointwise union over multisets of multisets of natural numbers, where M and N are multisets of
multisets. MBN ={M+N,Me Mand N e Nfand MUN = {MWYN,Me MandN € N}.

We employ two distinct multiset orderings over multisets and over multisets of multisets.
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Definition 4.9. For multisets of natural numbers M and N, define a multiset ordering M < N
if and only if there exists an injective multiset function f: M — N such that, for all m € M,
m < f(m). Strict multiset ordering M < N is defined such that M < N but M # N.

Definition 4.10. Given two multisets of multisets of natural numbers M and N, M T N holds if
and only if M can be obtained from N by repeatedly removing a multiset N from N and replacing
N with zero or more multisets M; such that M; < N. M C N is defined when M C N but M # N.

Definition 4.11. The occurrence count is the following function from formulae to multiset of
multisets of natural numbers.

|°|occ = {{0}} |alocc = |a|occ = {{1}} II/Ix.PIOCC _ ISX_P|0CC _ { {{0,0}} lfp =o

IP&Qlyee = 1P Olyee = IPloee U 1O]oee " IPloce othferQw1se

occ 1 Eo
[P Qloce = IPloce B 1Qloce IP@0lyee = 1P <Olyee =3 10hce ifP=o
|vx'P|occ = |3x'P|occ = {{0}} [ |P|occ |P|DCC v |Q|OCC otherwise

Definition 4.12. The wen count is the following function from formulae to natural numbers.

[9x.P|, =1+ |P|, |3x.Pl, = |Vx.P|, = [Ux.P|, = |P|, el = lely = |o]5 =1
[P<Ql,=1[PeQl,=[P3Ql,=|P|51Ql, |[PeQl,=[P&Ql,=I|P|,+I0Ql,

Definition 4.13. The new count is the following function from formulae to natural numbers.

[Ux.Pl, =1+ |P|, |3x.P|,; = |Vx.Pl,; = |9x.Pl,; = |Ply laly = laly =loly =1

|P7? Q|1/1 = |P|I/I|Q|I/I |P e9Q|1/1 = |P& Q|1/1 = |P|I/I + |Q|1/1 |P<1 Q|1/1 = |P ®Q|1/1 = max(|P|H, |Q|I/I)

Definition 4.14. The size of a formula |P| is defined as the triple (|P|,., |Pl5, |P|y) lexicographically
ordered by <. ¢ < is defined such that ¢ < ¢ or ¢ = ¢ pointwise.

Definition 4.15. The size of a proof of P with derivation of length n is given by the tuple of the
form (|P|, n), subject to lexicographical ordering.

LEMMA 4.16. For any formula P and term t, |P| = |P{t/x}|.
LEMMA 4.17. IfP = Q then |P| = |Q].

The following lemma we will appeal to regularly in the splitting proofs in subsequent sections
to bound the size of a derivation.

LEMMA 4.18 (AFFINE). Any derivation g, is bound such that |P| < |Q|.

4.4 The splitting technique for simulating sequent-like rules

The technique called splitting [21, 22] generalises the application of rules in the sequent calculus.
In the sequent calculus, any root connective in a sequent can be selected and some rule for that
connective can be applied. For example, consider the following rules in linear logic forming part of
a proof in the sequent calculus, where x # P,Q,U,V,W.

FP,RV QW
FP,U FQ,R FPeQ,R,V,W
FPeQ,RU FPeQ,RVEW
FPoQ,RU&(VEW)
FPoQ,Vx.RU&(V=EW)
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In the setting of the calculus of structures, the sequent at the conclusion of the above proof
corresponds to a shallow context of the form { - } ® Vx.R% (U & (V % W)) where the times operator
at the root of P ® Q is a principal formula that is plugged into the shallow context. Splitting proves
that there is always a derivation reorganising a shallow context into a form such that a rule for
the root connective of the principal formula may be applied. In the above example, this would
correspond to the following derivation over contexts:

{ }2Vx.(RBU)&(R3V B W))
{-} VxR U & (V3 W))
{-}3Vx.R3 (U & (V= W))

by the external rule

by the extrudel rule

By plugging in the principal formula, P ® Q, into the hole in the premise of the above derivation
and applying distributivity properties of a killing context (Lemma 4.4), the switch rule involving
the principal connective can be applied as follows.

Vx.((P3U)e(Q3R)&(PFRAV)e(Q=W))

Vx.(P®eQ)3RBU)& (P Q)ZRAIV 3 W))
PeQ)3Vx(RAU)&(RIVZW))

by the switch rule

by Lemma 4.4

Notice that the final formula above holds when all of the following hold: - P®U,+ Q% R, P3R3V
and - Q ¥ W. Notice that these correspond to the leaves of the example sequent above.

Splitting is sufficiently general that the technique can be applied to operators such as seq that
have no sequent calculus presentation [53]. The technique also extends to the pair of nominals new
and wen, for which a sequent calculus presentation is an open problem.

The operators times, seq, new and wen are treated together in Lemma 4.19. These operators give
rise to commutative cases, where rules for these operators can permute with any principal formula,
swapping the order of rules in a proof. Principal cases are where the root connective of the principal
formula is directly involved in the bottommost rule of a proof. As with MAV [23], the principal cases
for seq are challenging, demanding Lemma 4.5. The principal case induced by medial new demands
Lemma 4.6. The cases where two nominal quantifiers commute are also interesting, particularly
where the case arrises due to equivariance.

LEMMA 4.19 (Core SPLITTING). The following statements hold.
(1) If+ (P ® Q) ® R, then there exist formulae V; and W; such that+ P % V; and+ Q ® W;, where
7({ ‘/1 WM,‘/ZWWZ,...,Vnngn}and

1 <i < n, and n-ary killing context K{ } such that 5

if K{ } binds x then x # (P ® Q).
(2) If+ (P < Q) @ R, then there exist formulae V; and W; such that+ P 3 V; and+ Q & W;, where
(]({ Vl dM/l"/Zd‘/VZa"'vVnde } and
R

1 <i < n, and n-ary killing context K{ } such that

if K{ } binds x then x # (P < Q).
(3) If+ Ux.P% Q, then there exist formulae V and W wherex # V andv+ P3 W and either V=W

or V. = 3x.W, such that there is a derivation K.

(4) If+ 9x.P= Q, then there exist formulae V and W where x # V and+ P3 W and eitherV =W
orV = Ux.W, such that there is a derivation X

(5) If+ (P& Q)3 R, then+ PR and+ Q 3 R.

Furthermore, for all 1 < i < n, in the first two cases the size of the proofs of P 3 V; and Q 3 W; are
strictly bounded above by the size of the proofs of (P ® Q) ® R and (P < Q) ¥ R. In the third and fourth
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cases, the size of the proof P 3 W is strictly bounded above by the size of the proofs of Ux.P % Q and
9x.P 3 Q. The size of a proof is measured according to Definition 4.15.

Proof. The proof proceeds by induction on the size of the proof, as in Defn. 4.15. In each of the
following base cases, the conditions for splitting are immediately satisfied. For the base case for the
Uij.o = P

— , where ij # P. For the
Ux Wy.o® P

tidy name rule, the bottommost rule of a proof is of the form

o2
base case for the tidy rule, the bottommost rule is of the form ﬁ , such that o % P. For the
base case for times and seq, F (c ® ©) ¥ o and F (o <©) % o hold.

A Principal cases for wen. There are principal cases for wen where the rules close, suspend, left
wen, right wen and fresh interfere directly with wen at the root of a principal formula. Three
representative cases are presented.

A.1 The first principal case for wen is when the bottommost rule of a proof is an instance of the

Ux.(P~ Q) 3R o
- (P= Q)= #R.
5x P37 Ux. Q7R ,where F Ux.(P % Q)®R and x # R. By the induction

hypothesis, there exist S and T such that - PZQ % T and x # S and either S = T or S = 9x.T,

S
2 %3
and also we have derivation R. Since x # S, if S = T then w
Ux.Q=®S

size of the proof of P% Q% T is no larger than the size of the probf of ix.(P % Q) % R; hence
strictly bounded by the size of the proof of 3x.P % x.Q # R. If S = 9x.T then by the close

close rule of the form

. Furthermore, the

Ux.(Q®T) . Ux.(Q7T)
le——=_——°— IfS=Tth # h lee ——=———~ . H
rule x.0 5 9x.T S then, since x # S, by the extrude new rule, Mx.05 T ence
Ux.(0>3T
- Hx.(Q7T) o 0T
in either case m and thereby the derivation Mx.Q%S can be constructed,
x. =
Nx.QO=®R

meeting the conditions for splitting for wen.
A.2 Consider the second principal case for wen where the bottommost rule of a proof is an

Ix.(P3Q)=®R
35 P% 9% O 3R (P3Q)%
9x.P®9x.0 R , where + 9x.(P % Q) ¥ R and

x # R. By the induction hypothesis, there exist S and T such thatand - PZ Q% T and x # S
and either S = T or S = Ux.T, and also% . Furthermore, the size of the proof of P Q% T

is no larger than the size of the proof of 9x.(P % Q) % R; hence strictly bounded by the size
of the proof of 9x.P % 9x.Q ¥ R. Since x # S, if S = T then, by the new wen and extrude new

instance of the suspend rule of the form

Ux.(O®T
Wx(Q~T) Vx.(Q»T) .
rules, Ux.Q#®T .IfS = Ux.T then, by the close rule, ————— . So in either case,
i il 9x.0 3 Ux.T
Ix.Q3T
Ux.(O=®T
Vx.(03T) . @D .
————= , and hence the derivation 3x.Q %S can be constructed, as required. The
Ix.QNS x.OR
X.

principal cases for left wen and right wen are similar.
A.3 Consider the principal case for wen when the bottommost rule of a proof is an instance of
9y.Ux.P3Q
9x.94.P3Q
to handle the effect of equivariance. By applying the induction hypothesis inductively
on the length of 7, there exist Z and Q such that Z C §j and § # UZQ and - Ux.P 3 Q,
nz.0

the fresh rule of the form , where + 94.Mx.P % Q. Notice that § is required

and also . Furthermore, the size of the proof of Yix.P % Q is bounded above by the
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size of the proof of 9y.Ux.P % Q. By the induction hypothesis, there exist R and S such
R

that x # R, + P ® S and either R = S or R = 9x.S, and also 5 . There are two cases to

consider. If R = S then let T = UZ.S; and if R = 9x.S then let T = Ux.Uz.S, in which case,

since Z.Ux.S = Ux.1Z.S we have I/IZ R In either case x # T. Thereby we can construct
z.

L ~
he derivation "% _Furth ling to Lemma 4.7, the proof 772 0
the derivation V. Q . Furthermore, appealing to Lemma 4.7, the proo 1j.(P 3 S) can

9y.P 3 UZ.S
be constructed and, furthermore, |9§.P 3 UZ.S| < |9x.94.P % Q|, since by Lemma 4.18
|1Z.S| < |Q] and the wen count strictly decreases.
B Principal cases for new. The principal cases for new are where the rules close, extrude new,
medial new and new wen rules interfere directly with the new quantifier at the root of the
principal formula. Three cases are presented.

B.1 The first principal case for new is when the bottommost rule of a proof is an instance of

Ux.(P%Q)®R . .
— (P % R.
TxP33x05R’ where + Ux.(P % Q) # R. By the induction

hypothesis, there exist formulae U and V such that - P % Q # V and x # U and either
U =V orU = 39x.V, and also we have derivation% . Furthermore, the size of the proof of
P = Q %V is no larger than the size of the proof of Ux.(P % Q) % R; hence strictly bounded

the close rules of the form

. Ix.(QBV) |
by the size of the proof of x.P % 9x.Q % R. In the case U = V, we have W , since
# U. In the case U = 9x.V, we have o2 7 V) Hence, by applyi fthe ab
x # U.In the case U = 9x.V, we have 3% 033xV ence, by applying one of the above
Ix.(Q7V)
cases the following derivation 39x.Q U can be constructed as required. The principal
Ix.QFR

case where the bottommost rule in a proof is the extrude new rule follows a similar pattern.
B.2 Consider the second principal case for new where the medial new rule is the bottommost
rule of a proof of the form
Ny.(Ux.P <Ux.Q) 3 R
HxWj.(P<Q) 3 R

such that + Uy.(Ux.P < Ux.Q) 3 R.

The 3 is required to handle cases induced by equivariance. By applying the induction hypoth-
esis repeatedly, there exists Z and R such that Z C § and § # 3Z.R and + (Ux.P <Ux.Q) T R,

and also % . Furthermore, the size of the proof of (Ux.P <« x.Q) ® R is bounded above by

the size of the proof of Uj.(Mx.P < Ux.Q) ¥ R. By the induction hypothesis, there exist S;

and T; such that - Ux.P % S; and + Ux.Q 3 T;, for 1 < i < n, and n-ary killing context
K{S1<T1,S2<Ts,...,Sn<Ty }

such that . Furthermore, the size of the proofs of Vix.P % §;

R
and Ux.Q ® T; are bounded above by the size of the proof of (Ux.P < Ux.Q) ¥ R. By the
induction hypothesis again, there exist U’ and U’ such that + P % U’ and x # U’ and either
. A . A i .
U'=U'or U' = 9x.U", and also % . Also by the induction hypothesis, there exist V*
i
A A . . A . AL i
and V* such that - Q # V' and x # V' and either V' = V' or V' = 9x.V*, and also ‘;— .

Now define W and W such that W = SZ.‘K{ Ui«Vi:1<i<n } and, ifforall1 <i < n,
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B.3

Ul = Ut and Vi = Vi, then W = W; otherwise W = 9x.W. Hence for each i, one of the
following derivations holds.
e U=Uland Vi =Vihence U < VI = Ul « V.
. A . N . ) (Ul « ‘}z)
o IfU' =39x.U" and V! = V', hence x # V', by the left wen rule X .
Ix.Ul« Vi
o Ny A Ny ox. (0 < V)
o IfU' =U* hence x # U', and V' = 9x.V?, by the right wen rule x .
Ul <9x.Vi
ox. (0 < 1)
e Otherwise by the suspend rule x
Sx.Uf « SX.Vi' L .
If for all i such that 1 < i < n, U' = U' and V! = V' then W = W. Otherwise, by

9Z.ox.K{U'«Vi:1<i<n}
Lemma 4.6, — — , where the premise is equialent to W. Thereby
9Z.K{U «Vi:1<i<n}
the derivation below left can be constructed, and furthermore, using Lemma 4.7, the proof
below right can also be constructed.

o

Uy K{o:1<i<n}
I/Igj.?({ (P??Ui)<(Q7?f/i):15i3n}

w
9Z.K{U «Vi:1<i<n} Hﬁ.?({(P«Q)??(ﬁ"<Vi):1si5n}
ZHKSi-Ti:1<isn} ug.((P+Q) 3 K{ U1« Vii1<i<n})
9z.R _
R Wjj.(P<Q)3 W

By Lemma 4.18, |W’ < |R|; hence |I/I§.(P <Q)® W| < |Wx.Uy.(P < Q) 7 R| since the new

count strictly decreases, as required.

Consider the third principal case for new where the bottommost rule of a proof is the new

wen rule of the form
NzZ.2y.Ux.P=Q

= , where + UZ.9y.Ux.P % Q.
UxWNz.9y.P3Q

By applying the induction hypothesis repeatedly, there exist w and Q such that w C Z

and Z # SVv.Q and + Jy.Ux.P = Q and also w.Q . Furthermore, the size of the proof of

9y.Mx.PQ is bounded above by the size of the proof of Z.9y.Mx.P% Q. By the induction
hypothesis, there exist R and S such that x # Rand - Vx.P% S and either R = S or R = y.S,

and also = . Furthermore, the size of the proof of Mx.P % S is bounded above by the size

of the proof of 3y.Nx.P % Q, hence strictly bounded above by the size of the proof of
Nx.9y.P % Q enabling the induction hypothesis. By the induction hypothesis again, there
exist U and V such that x # U and + P % V and either U = V or U = 9x.V, and also % .

Let W and W be defined such that, if R = Ny.S, then W= Ny.V;or, if R = S, then W=V.
If V = U then define W = 9w.W.If U = 9x.V, then define W = 9x.9w.W. There are four

scenarios for constructing a derivation with premise W and conclusion 9w.R.
e Inthe case V = U and R = Uy.S then dw.Uy.U = W.
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e IfV=UandR=Sthendw.U =W.
e If both U = 9x.V and R = 1y.S hold, then we have

Ix.9w.Ny.V
9w.Ny.9x.V
u , where the premise is W.
9w.R
e Ifboth U = 9x.V and R = S then g"_V,U , where the premise is equivalent to W.
w.
w
9w.R
Thereby, by applying one of the above cases, we have 9.0
Q

In the case that W = Ny.V, the left most derivation below holds. In the case, W =V and
y # V the middle derivation below holds. Hence in either case, appealing to Lemma 4.7, the
proof below right can be constructed:

[}

I/IE.I/Iy,o
NzZ.Ny.(P=V)
Uy.(P3V) qy—
Ny.(P3V) y.(P3V) I/Iz.(Sy.P 79 W)
Sy.PIUY.V 9y.P3W UZ.9y.P 3 9. W

Furthermore, by Lemma 4.18, |917V.W’ < |Q|. Hence iSy.P 3 SQ.W‘ < |Ux.1z.9y.P 3 Q|
since the new count strictly decreases.

C Principal cases for seq. There are two forms of principal cases for seq. The first case, induced
by the sequence rule, is the case that forces the medial, mediall and medial new rules. The other
cases are induced by the suspend, left wen and right wen rules (which are forced as a knock on
effect of the medial new rule).

C.1 Consider the first principal case for seq. The difficulty in this case is that, due to associativity

of seq, the sequence rule may be applied in several ways when there are multiple occurrences
of seq. Consider a principal formula of the form (T, < T}) < T;, where we aim to split the
formula around the second seq operator. The difficulty is that the bottommost rule may be
an instance of the sequence rule applied between T; and T; <T;. Symmetrically, the principal
formula may be of the form Ty < (T; < T;) but the bottommost rule may be an instance of
the sequence rule applied between T < T; and T. In the following analysis, only the former
case is considered; the symmetric case follows a similar pattern. The principal formula is
(Ty < T1) < T, and the bottommost rule is an instance of the sequence rule of the form

(To3U)<(T1 <) 3 V)3 W
(<1 <T)3U<V)ZW

where Ty # o, T, # o (otherwise splitting is trivial), and either U # o or V # o (otherwise
the sequence rule cannot be applied); and also + ((Tp Z U) < ((T; < T,)  V)) ® W. By the
induction hypothesis, there exist P; and Q; such that + Ty 3 U ® P; and + (T} < T5) 3V & Q;
hold, for 1 < i < n, and an n-ary killing context K{ } such that

r}<‘{P1<‘Q1,...,P,1<‘Qn} )
w
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Furthermore, the size of the proof of formula (T; < T,) ® V ® Q; is bounded above by the size
of the proof of (Tp ® U) < ((T; < T;) ® V))) ® W, hence the induction hypothesis is enabled.
By the induction hypothesis, there exists R; and S} such that+ T} % R; and + T, ¥ S}, for

1 < j < m;, and m;-ary killing context ‘Ki{ } such that
K{Ri<S,. .. <St o}
V i Qz '

Furthermore, by Lemma 4.5 there exist killing contexts ‘Koi{ } and ‘Kl’ { } and sets of
integers Jic{1,...,n}, K" € {1,...,n} such that

KR je ] b oxifsiikexi)
K{Ri<S,. .. ,R, <Si }

Thereby, the following derivation can be constructed.

W{(U??Pi)d(g{R;:je]i}«Wf{s,i:keKi}:1SiSn}

W{(UWPI-%?("{RJ"«SJ’::lstmi}:1Si§n}
K{UBP)<(V3Q1),....,(UBPp)<(VIQp)}
K{U<V)3(Pr<Q1),...,(U<V)F(Py<Qy) }

(U<V)7?7({P1<Q1,...,PH<QH}
U-V)3 W

Furthermore, the following two proofs can be constructed.

K{e:1<j<m}
(I(i{T17?R’ 1<]<m,}

o

Ki{o:1<j<m} Tl?gq(i{Rl }
Wf{ms;:mjsm} (Ty?U % P;) = (m?(l{ R:1<j< })
K s <j<m (To<Tl)7?((U7?Pi)<7(i{R;:lstmi})

By Lemma 4.18,
“K{(U?XPI)ﬂ(g{R}:je]"}<7({{S,i:keK"}: 1Si§n}| <|(U=<V)zW|

which are also upper bounds for ‘7(’{ Ri:je]! }| and ‘7(1{ Si 1k e Ki }| Furthermore,
To # cand T, # o both |To|,ee T |To < T1 < T2l pee and [Tz T |T0 < Ts|,cc Hence the
sizes of the above proofs of T, % ‘K’{ SJ‘.: 1<j<m; } and

(Ty<Ty) ® ((U??P,—)JK"{R;: 1<j<m })
are strictly less than the size of the proof of (To «<T; <To) Z (U < V) Z W.
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C.2 Consider the principal case for seq where the bottommost rule of a proof is an instance of

the suspend rule of the form
(Po <9x.(Py < P,) <P3) 3 Q
(Po<9x.P; <9x.P, < P3) 3 Q

By induction, there exist Ui0 and U} such that + Py 3 Ui0 and + (9x.(Py <Py) <P3) 3 U}
K{U)<Ul:1<i<n}

, where + (Py < 9x.(P; < Py) < P3) % Q holds.

hold, for 1 < i < n, and n-ary killing context K{ } such that

Furthermore the size of the proof of (9x.(P; < P;) < P3) ® U} is bounded above by the size of
the proof of (Py < 9x.P; < 9x.P, < P;) ® Q. By induction again, there exist Vji and Wji such
that - 9x.(P; < P2)7?Vji and  Ps 7?Wji, for1 < j < m;, and m;-ary killing context K*{ } such

7(’{Vj’<Wj’:1§jSm,-}

that the following derivation holds. . Furthermore, the size of

U}
the proof of 9x.(P; < P;) % V;.i is bounded by the size of the proof of (9x.(P; < P,) < P3) 3 U}
By applying the induction hypothesis again, there exist R]i. and ﬁ; such that x # R; and

1
F (P <P,) 781?; and either R]i. = R]l or R]i. = I/Ix.IA?J’:, and also ?jz . Furthermore, the size of the
J
proof of (P; < Py) ® R; is bounded above by the size of the proof of (9x.(P; < P;) < P;) 3 U}
By a fourth induction, there exist S ]’c] and Tli’j such that both + P; & S]ic’j and - P, ¥ Tli’j hold,
for 1 < k < €%/, and ¢*/-ary killing context K*/{ } such that the following derivation
holds:

i,j) obJ Lj obj i,j ij i,j
K| SP T S TS T

Ri
j
By Lemma 4.5, there exists some I} C {1 .. .Ki’j} and]; C {1 .. .fi’j} and killing contexts
K3/{ }and K/ { } such that

K| s ke 1t} s T ke g

7("’1'{ SpTeTH 1<k <0 }

i
Rj

Define §]’ and Tji as follows. If R]i. = ﬁ;, then
=g sy ker | and T =9 T ke gt s

and hence, we can construct the derivation

K s ket < T ke g1

L
Rj
where the premise equals .§j’ < f“j’ If however R;. = I/Ix.lA?j’:, then define

S =me s sy ke 1} and T = e { T ke gt}
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and hence, the derivation

5T
e (57 s ket | ex T ke g )
K;

can be constructed. By Lemma 4.5, for some K' C {1...m;}, L' € {1...m;} and killing
contexts 7(5{ } and K!{ }, we obtain the following derivation:

wif i et} ai{fiewijert]

i| Qi i i ; )
‘K{Sj iy wj.lsJSm,}
By using the above derivations we can construct the following derivation:

7({Ui°<7<g{§]’1:jeK"}<7<f{f]?<wjisjeLi}:15isn}

x{ul<Ul:1<i<n}
Q
Consider whether the judgement v 9x.P; % 5‘; holds. We have two cases: in the first,
di _ qebJ ) b i 3i. & _ Lj) qlJ. i
Sj =K, { Syl ke Ij } and x # Sj,lnthe seconde = Ux.K, { Sl ke Ij }.Ineachcase,

one of the following derivations can be respectively constructed.

I/Ix.(Pl ??‘Ké’j{ Shikell })

Wx.P, M{é’f{ SHikel } I/Ix.(P1 7?7(5’1'{ S¥ikell })
v vk sp) kel | o Ky s ketl |

Similarly, consider whether judgement + 9x.P, % YA"J." holds. Either we have

f.i:‘](i’j{Tli’j:kEJ}} andx#f"ji;

J 1

or we have YA"J’ = Hx.?(li’j { T]i’j 1 ke ]}l } In each case, one of the following derivations

holds, respectively.

e (P39 T ke g )

wep, 7K T ke U | ux. (P, 3 9G{ T k e )

ox.P, 3 K- { ket } 9., 3 1
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Thereby, by applying one of the above cases for each i and j, the following two proofs exist.

K megG | o keti | je ki) K meg e ke i} jert|
K mxay{ pasyiken ekt wi{ s { maTiike i) jert)
wif e (s s ke ) el e (mar T ke ) et
Kl oxp a8l jex | ifoxp, 1l jert)
9%.P, wwg{sf;:jeKi } 7<1f{ (ax.PﬂT;‘) . (P37w\/jf) :jeLi}
(P 3 UP) = (w3 g $1: j e K ) K| @x.py <y (Taw) jeri]
(Py <9x.Py) ™ (U;u?(g{ﬁ;ﬁ:jeld }) (3x.Py < Py) ¥ (7(1{ Tiewi:jel })

Furthermore, by Lemma 4.18,

[UP < {8} je kY| <101 and [I{ T} Wi je 1} <101

Hence, sizes
|(P0 <3x.P) (U,.0 K S ek })| and |(9x.P2 <Py (7(;’{ Tewiijel })|

are strictly bounded above by |(Py < 9x.P; < 9x.P; <« P3) ¥ Q|, as required. Cases for left wen
and right wen rules are similar.
D Principal case for times. There is only one principal case for times, which does not differ
significantly from the corresponding case in BV and its extensions. A proof may begin with an
instance of the switch rule of the form

(TheUye(ThoU)) 3 V)3 W
(TheTyoUyeU)3VIW

wheret (Ty o Uy @ (Ty o Up) B V)) 3 W,

such that Ty® Uy # o and V # o (otherwise the switch rule cannot be applied), and also T ® Ty # o
and Uy ® U; # o (otherwise splitting holds trivially). By the induction hypothesis, there exist
R; and S; such that + (Ty @ Uy) ® R; and + (T; @ U;) ® V ® S; hold, for 1 < i £ n, and an
. . K{Ri™Si,...,Ru Sy}

n-ary killing context K{ } such that derivation W holds. Furthermore
|(To ® Up) # R;| and |(T; ® Uy) ® V 3 S;| are bounded above by [(Ty © Uy @ ((T1 © Up) 3 V) 3 W,
Hence, by the induct-ion hypothgsis twice there .exist formulae P;’O, Q;’O, P;C’l and Q,lc’1 such that
F T 75’P;’0, FU B Q}’O, F Ty 7?le and+ U; ® Q]lc’l, for1 <j<m?and1 <k < mj, and mf-ary
killing context K?{ } and m}-ary killing context K}{ } such that derivations

i,0 i,0 . . i,1 i1,
K P Qi jemtl KR O 1<k <mi)
Ri V73)Si
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can be constructed. Thereby the following derivation can be constructed.

7<{7(}{7(}’{P}°7?P;;1wQJ’}O??Q,"j:1Sj5m‘;}:1skSm}}:15i

IA

g
!
")

IA
IA
=

‘K{?(}{‘K?{P;’OWQJ’:’OJSjém?}@PI?l??Qli’lzlskSm}}:1 i

IA

i

IA

W{?(?{P]’PO??QJ’}O:1Sj5m?}7y7(}{P,i’17?Qli;1:1sk3m}}:1
K{R;?V™S:1<i<n}
V7?7({R,-7?Sl-:1SiSn}

Vaw

Now observe that the following two proofs can be constructed.

Furthermore, |Ty ® T|

(To 3 p]?’o) @ (Tl 3 P]i’l) (U0 3 QJ’}O) @ (U1 3 Q;'gl)
(To  Ty) % PX0 P! (U @ Uy) = Q5 Q)

oce C1To® Ty @ Uy ® Uy and |Uy ® Uyl yee C [Ty © Ty ® Uy ® Ul g since

Toe Ty #cand Uy ® U; # o. Also, by Lemma 4.18, the following inequality holds.

’7({‘](}{7(?{P;’°7?P]?1??QJ’:’°7?Q21:1Sj£m?}:1Sk§m}}:lSiSnH§|V7ﬁ’W|

Hence both ‘PJI:’O %3 P]i’l

< |V W|and ’Q]l:’o 73 Q,’cl‘ < |V # W| hold. Thereby the size of each of

the above proofs is strictly bounded above by the size of the proof of (Ty @ Ty ® Uy ® Uy ) 3V 3 W.

E Principal cases for with. There are three forms of principal case where the with operator is
directly involved in the bottommost rules. Note that in MAV the with operator is separated from
the core splitting lemma, much like universal quantification in this paper. However, in the case
of MAV1 the left name and right name rules introduce inter-dependencies between nominals
and with, forcing cases for with to be checked in this lemma.

E.1

E.2

Consider the principal case involving the extrude rule. In this case, the bottommost rule is
of the form
(P3R)&(Q®R)=®S
(P&Q)7 RS

where + (P % R) & (Q % R) % S holds.

Now, by the induction hypothesis, since - (P # R)&(Q ® R)% S holds, we have that - PZR%S
and - Q #® R % S hold, as required.
Consider the principal case involving the left name rule. In this case, the bottommost rule
is of the form

9x.P& Q)3 R

(Gx.P&Q) R’ where x # Q, such that + 9x.(P & Q) ® R.

% andx # Sandr (P& Q)% $

and either S = S or S = Ux.S. Furthermore, the size of the proof of (P & Q) % § is strictly
less than the size of the proof of (9x.P & Q) ¥ R, since the wen count strictly decreases, and
by Lemma 4.18, |§| < |R|. By the induction hypothesis again, - P % S and - Q % $ hold.

Now if S = S then x # $ and - Q 3 S holds immediately, whereas - 9x.P 3 R is proved as
below left. Otherwise, S = HUx.S and F 9x.P ¥ Ris proved in the middle derivation below,

By the induction hypothesis, there exist S and S such that
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whereas - Q # S is proved in the right derivation below.

o

Ux.o o
Hx.(p 3 5) _° _ HMxo
v _ Hxo I/Ix.(Q 2 s)
. (P ) s) V. (P 3 s) - 7

Ox.P%S 9x.P % Ux.S [ SR
9x.P 3 R 9x.P3R Q% 9x.8

%S
3R we have that - Q # R holds. Thereby

F 9x.P % Rand F Q¥ R hold, as required. The case for the left name rule, where U replaces
3 is similar; as are the cases for the right name and with name rules.
E.3 Consider the principal case involving the medial rule. In this case, the bottommost rule of
a proof is of the form
(P&R)<(Q&S)3W
(P<Q)&R=S) AW
By the induction hypothesis, for 1 < i < n there exists U; and V; such that + (P & R) 3 U;
and + (Q & S) @ V; hold, and n-ary killing context K{ } such that KLU - V’Wl <is<n} .
Furthermore, the size of the proofs of (P & R) % U; and (Q & S) ® V; are strictly less than
the size of the proof of (P & R) <(Q & S)) ® W. Hence by the induction hypothesis again,

FP3U;, +FR3U;, + Q3 V;and + S % V;. Hence we can construct the following two proofs,
as required.

Hence, in either case, + Q #® S and since

such that - (P & R) < (Q & S)) ® W holds.

K{o:1<i<n} K{o:1<i<n}
K{PU)<(Q3V):1<i<n} K{(RBU;)<(SAV;):1<i<n}
K{(P<Q)»U;<V)):1<i<n} K{(R<S)®(U;=Vi):1<i<n}
(P<Q)3K{U;<Vi:1<i<n} (R<S)3K{U;<V;:1<i<n}

(P<Q)3W (R<S)3W

F Commutative cases induced by equivariance. There are certain commutative cases induced
by the equivariance rule for nominal quantifiers. These are the cases that force the rules all
name, with name, left name and right name to be included. Notice also that equivariance for new
is required when handling the case induced by equivariance for wen; hence equivariance for
both nominal quantifiers must be explicit structural rules rather than properties derived from
each other.

F.1 Consider the commutative case for wen where the bottommost rule of a proof is an instance
of the close rule of following form

Ny.(3x.P® Q)3 R
9x.9y.P 3 Ny.Q B R

,where  Ny.(9x.P 3 Q) 3R,y # Rand x # R.

Notice that 9x is the principal connective but the close rule is applied to 9y behind the

———— andx # R’
Ny.Q=%R

and either + 9y.P % R’ or there exists Q’ such that R’ = Ux.Q’ and + 3y.P % Q’, and the
size of Dy.P % R’ is strictly smaller than 3x.9y.P ® Ny.Q % R. By the induction hypothesis,
there exist S and T such that y # Sand - 9x.P ® Q ® T and either S = T or S = 9y.T

principal connective. Thus we desire some formula R’ such that
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F.2

F.3

and the derivation 2 holds. Furthermore the size of the proof of 9x.P % Q % T is bounded

above by the size of the proof of Uy.(3x.P ® Q) # R; hence strictly bounded by the size
of the proof of 9x.9y.P % Ny.Q ¥ R. Hence, by induction, there exist U and V such that

P2V and x # U and either U = V or U = Ux.V the derivation U holds. Observe

o=T
) Uy.(Q>T) | Uy.(Q=T)
= —_ # S. = . —_— .
that if S = T, then My.07S ° sincey # S.If S = 3y.T then My.0 33y T Thereby

the following derivation can be constructed, where if U = V then W = Uy.V and if
U = Ux.V then W = Ux.1y.V, and also the premise is equivalent to W by equivariance

I/IyU o
y.(Q 3 T) . _ My
for new: TMy.0vs Furthermore, the following proof can be constructed Wy. (P V)
Ny.Q 3R Jy.P3Uy.V

and, by Lemma 4.18, |[Uy.V| < |Ny.Q % R| hence |9y.P % Uy.V| < |9x.9y.P 3 Ny.Q 3 R|,
as required.

Consider a commutative case for new induced by equivariance for new, where the bottom-
most rule is an instance of extrude new of the form

Ny.(Mx.P % Q) % R
NUx Ny PR Q3R

,where y # Q and + Wy.(Mx.P 3 Q) ¥ R.

By the induction hypothesis, there exist S and T such that y # S and + Ix.P % Q # T and
either S =T or S = 9y.T, Where% . Furthermore, the size of the proof of Ux.P % Q % T is

bound above by the size of the proof of Uy.(Mx.P % Q) ¥ R, hence strictly bound above by

the size of the proof of Vix.Uy.P % Q % R. Hence, by induction again, there exist U and V
U
such that x # U and + PV and either U = V or U = 9x.V,and also Q # T . Now define 1%

and W as follows. If S = T thenlet W = V.If S = 9y.T thenlet W = 9y.V.IfU = V then let

U
W = W.IfU = 9x.V then let W = 9x.W. Now observe if S = T then Q3T andU = W.
O R
y.U
9y.(Q=T .
For S = 39y.T observe M ,since y # Q, and if U = V then 9y.U = W, while if
Q®39y.T

O=R

U = 9x.V then 3y.U = 9x.W, by equivariance for wen. Hence in all cases W and, since

O R
y # Q and y # T, we can arrange that y # W. Now, for the cases where W = V, we have

Ny. P33V . Ny.(P3V
y # V, and hence y.( ) . Also if W = 9y.V, then y.( ) . Hence in either case

Ny P33V Wy.P 3 3y.V

Ny.o
we can construct the proof Uy.P3V) - Furthermore, |I/Iy.P 7z W| < |[Nx.Uy.P3 Q= R|,
Uy.P3 W
since by Lemma 4.18 |W| <|Q=ZR|.
Similar commutative cases for wen and new as principal formulae are induced by equiv-
ariance where the bottommost rule in a proof is an instance of the close, right wen or
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suspend rules. In each case, the quantifier involved in the bottommost rule appears be-
hind the principal connective and is propagated in front of the principal connective using
equivariance.

G Regular commutative cases. As in every splitting lemma, there are numerous commutative
cases where the bottommost rule in a proof does not directly involve the principal connective.
For each principal formula handled by this splitting lemma (new, wen, with, seq and times) there
are commutative cases induced by new, wen, all, with and times and also two commutative
cases induced by seq. Thus there are 35 similar commutative cases to check, that all follow a
pattern, hence only a representative selection of four cases are presented that make special use
of a-conversion and the rules new wen, all name, with name, left name and right name. Further,
representative cases appear in the proof for existential quantifiers.

G.1 Consider the commutative case where the principal formula is Yx.P and the bottommost
rule is an instance of extrude new but applied to a distinct new quantifier My.Q, as in the
following rule instance

Ny Ux.PZQBR)3S
Ux.P3Uy.QB® R3S

, where y # VIx.P % R.

Also assume, by a-conversion, that x # y. By induction, there exist T and U such that
FUx.P3Q3RA3U,y # T and either T = U or T = 3y.U, and also % Furthermore,
the size of the proof of Ix.P % Q ® R % U is bounded above by the size of the proof
of Uy.(Ux.P % Q ® R) # S and hence strictly bounded above by the size of the proof of
Ux.P3Uy.Q3R=S, enabhng the induction hypothe31s Hence, by the induction hypothe31s
there exist formulae V and V such that - P3 V and x # V and either V = V or V = 9x.V,

and also m . Define W such that if V = V then W = Uy.V and if V = 9x.V then

W = 9x.My.V. Hence if V = 9x.V then % by applying the new wen rule, where
y.

the premise equals W. If V = V then Uy.V = W. In both cases, x # W. Now observe that
either T = U and y # U, hence the derivation (a) below holds; or T = 9y.U, hence the
derivation (b) below holds. Given these, the derivation (c) can be constructed:

w o
I/IyV I/Iy.o
Wy.Q3RAU) Wy (Q3R3U) [ v
Wy.(Q?»R3U) Uy (Q3R) »9y.U Wy.Q3RAT Hy'(P i V)
Wy.Q3RST Wy.Q3R~»9y.U  WNy.Q3R3S  P3UyV
(a) (b) (c) (d)

Since y # Wx.P % R and x # y, we have y # P; thereby the proof (d) above can be con-
structed. Furthermore, ’P % I/IyV| < [9x.P® Uy.Q ® R% S| since by Lemma 4.18 |I/Iyl7‘ <
|[Uy.Q # R % S| and the wen count strictly decreases.

G.2 Consider the commutative case for principal formula 9x.T where the bottommost rule is
external:

((Gx.T3UZW)&(@x.TRVEZW))® P
xTHU&V)ZW=RP

where F (9x.T 3 U 3 W) & (9x.T V% W)) ¥ P holds. By the induction hypothesis, we
have that both + 9x. T3 U ® W ® P and + 9x.T ® V ® W % P hold; and furthermore the
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G.3

multiset inequalities

[9x.T3U3WZPl,.. C [9x.Tx®{U&V)3W 3P|, and
[9x.T3VZWAP|,., C [Dx.T3{U&V)ZW 3P|

occe

hold. Hence, by the induction hypothesis, there exist O and O such that + T % 0, x # Q and
either Q = Q or Q = Ux.Q. Also, by the induction hypothesis, there exist R and R such that

F T# R, x # R and either R = R or R = Ux.R. Furthermore the two derivations L
R UBW®=RP
and VAWAP hold. Now define S such that if Q = Q and R = Rthen S = Q & R, and
S =9x. (Q & ﬁ) otherwise, observing that in either case x # S. In the case Q = 9x.0 and
. ox.(Q«R) . .
R = 9x.R, by the with name rule, .In the case Q = 9x.0Q and R = R, by the
Ix.Q &9x.R
ox.(0«R) A .
left name rule, . In the case that Q = Q and R = 9x.R, by the right name rule,
Ix.Q &R
9x. (Q & R)
. Thereby the following derivation and proof can be constructed:
Q &39x.R
S o&o
Q&R (T??Q)&(T?yf%)
UsW=RP)&(VZW B P) .
U&V)3W=3P T??(Q&f\’)

Furthermore, by Lemma 4.18, |S| < |[(U & V) ® W % P|; and, since the wen count strictly
decreases, |T 30 & ﬁ| <|[2x.TRU&V)3W 3 P|.
Consider the commutative case where the principal formula is 9x.T and the bottommost
rule is an instance of the extrudel rule of the form
Vy.Ox.T3U3V)3W
IxTA3VYURVIW

assuming y # (9x.T ® V) and + Vy.(Ox.T ® U # V) ® W holds. By Lemma 4.2, for every
variable z, - (Ox.T 3 U » V){z/y} % W holds. Furthermore, since y # (9x.T 3 V), we have
equivalence Qx.T 3 U » V){Z/y } W = Sx.TWU{Z/y}%’V@W. The strict multiset inequality
’Sx.T 3 U{Z/y} V= W|OCC C [9x.T®Vy.U %V % W]|,.. holds. Hence, by the induction
hypothesis, for every variable z, there exist formulae P? and Q* such that - T % Q% and
x # P? and either PZ = Q% or P? = Ux.Q?, and also U{Z'/},}Pm . Define W# such
that if P* = Q% then W? = Vz.Q% and if P* = Ux.Q? then W? = Ux.Vz.Q?. Hence if
Ux.Vz.Q%
Vz.Ux.Q* °
Hence, for a fresh z such that z # (Vy.U 3 V ® W) and z # T, the following derivations can
be constructed:

P? = Ux.Q" then, since V permutes with any quantifier using the all name rule,

w* .
Vz.P* Vz.0
V2. (U{#,} 2V 2 W) Vz.(T % Q%)
VyUs VAW T3 Vz.07
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Furthermore, |W?| < |Vy.U ® V % W| by Lemma 4.18; hence
IT 3 Vz.0%| < [9x.T3Vy.UBV 3 W|

since the wen count strictly decreases.
Consider the commutative case where the principal connective is wen and the bottommost
rule is an instance of the extrude new rule of the form
Uy.3x.P3Q3R)=S
IxP3UYy.Q3R3S

where y # 9x.P ¥ R and also x # y, where the second condition can be achieved by a-
conversion. By the induction hypothesis, there exist T and U such that - 9x.PZ Q%R U,
y # T and either T = U or T = 9y.U, and also % Furthermore, the size of the proof of
9x.P % Q% R U is bounded above by the size of the proof of Uy.(9x.P % Q ¥ R) ¥ S and
hence strictly bounded above by the size of the proof of 9x.P % Wy.Q ® R ¥ S, enabling the
induction hypothesis. Hence, by the induction hypothesis, there exist formulae V and \%

X . . . 4
such that - P%V and x # V and either V = V or V = Ux.V, and also OSRAU - Define

W such that if V = V then W = Uy.V and if V = Hx.V then W = Ux.My.V. Now observe
that either we have that T = U and y # U and hence the derivation (a) below left holds; or
we have that T = 9y.U and hence the derivation (b) belw holds. Hence, by applying one of

these cases, we have the derivation (c) below, where the premise is equivalent to W.

I/IyV I/Iy.o
Ny (Q®R3U Ny (Q®R3U .
y-(Q ) y.(Q ) Hy.(m,v)
Ny (Q=3R=3U) MHy.(QZR)%3y.U Ny.Q3R=>T )
Ny.Q3R=T Ny.Q 3 R®3y.U Ny.Q3R=S P3Uy.V
(a) (b) (c) (d)

Since y # 9x.P and x # y, we have y # P; thereby the proof (d) above can be constructed.
Furthermore, |P 2] I/Iy.V| < |9x.P® Uy.Q ® R % S| since by Lemma 4.18

|y.V| < [My.Q 3R> S|

and the wen count strictly decreases.

H Commutative cases deep in contexts. In many commutative cases, the bottommost rule
does not interfere with the principal formula either directly or indirectly. Two such cases are
presented for wen as the principal connective. Other such cases use almost identical reasoning.
H.1 Consider when a rule is applied outside the scope of the principal formula. In this case, the

bottommost rule in a proof is of the form

IxUBC{W}
m s such that + 9x.U % C{ w }
By the induction hypothesis, there exist formulae P and Q such that + U % Q and x # P
P
and either P = Q or P = Hx.Q, and also P . Hence clearly derivation C{ W }
ety vy

holds. Furthermore, by Lemma 4.18, [9x.U 3 C{ W }| < [US C{ W }|and [UZ C{ W }| <
[9x.U 3 C{V }|
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H.2 Consider the case where the following application of any rule in a derivation of the form
x.C{U}z»W
Ix.C{T}»W

is the bottommost rule is a proof of length k + 1, where + 9x.C{ U } W has a proof of
length k. Hence, by induction, there exist formulae P and Q such that + C{U } # Q

and x # P and either P = Q or P = UMx.Q, and also % . Furthermore, the size of

the proof of C{ U } ® Q is bounded above by the size of the proof of 9x.C{U } ® W;
hence either |[C{U } Q| < [9x.C{U }® W] or |[C{U } Q| = |9x.C{U } ® W| and

the length of the proof of U % Q is bound by k. The proof C{U}?Q can be con-
C{T}=Q

structed as required. Furthermore, if [C{ U } # Q| < 9x.|C{ U } ® W|then|C{ U } ® Q| <

[9x.C{U } ® C{V }|, by Lemma 4.18. Otherwise, |C{ U } #® Q| = |[9x.C{ U } ® W| hence

U % Q| < |9x.U® C{V }| by Lemma 4.18 and the length of the proof of + C{ T } ® Q is

k + 1. Thereby in either case, the size of the proof of C{ T } # Q is bounded above by the

size of the proof of 9x.C{ T } 3 W.

This covers all scenarios for the bottommost rule, hence splitting follows by induction over the
size of the proof. (u]

The final three splitting lemmas mainly involve checking commutative cases. The commutative
cases follow a similar pattern to the commutative cases in Lemma 4.19.

LEMMA 4.20. If+ 3x.P % Q, then there exist formulae V; and values v; such that v+ P{"/,} 3 V;,

K{Vi,Va, ...,V }

where 1 < i < n, and n-ary killing context K{ } such that 0 >~ and if K{ } bindsy

theny # (Ix.P).

The proofs of the splitting lemmas for plus and atoms offer no new insight or difficulties compared
to their treatment in MAV [23]. Similarly, to the above lemma for existential quantifiers, the proofs
mainly involve commutative cases of a standard form.

LEmMA 4.21. Ift (P ® Q) ¥ R, then there exist formulae W; such that either+ P 3 W; or Q 3 W;

where 1 < i < n, and n-ary killing context K{ } such that KAWL W, Wa } and if K{ } binds x

R
thenx # (P ® Q).
LEMMA 4.22. The following statements hold, for any atom a, where if K{ } binds x then x # a.
o If+ @ % Q, then there exist n-ary killing context K{ } such that W.
o If+ a ® Q, then there exist n-ary killing context K{ } such that W.

5 CONTEXT REDUCTION AND THE ADMISSIBILITY OF CO-RULES

The splitting lemmas in the previous section are formulated for sequent-like shallow contexts. By
applying splitting repeatedly, context reduction (Lemma 5.2) is established, which can be used to
extends normalisation properties to an arbitrary (deep) context. In particular, we extend a series
of proof normalisation properties called co-rule elimination properties to any context, by first
establishing the normalisation property in a shallow context, then applying context reduction to
extend to any context. Together, these co-rule elimination properties establish cut elimination, by
eliminating each connective directly involved in a cut one-by-one.
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Clasz) cvrPy
(o1 (atomic co-interaction) ClPCLTT (co-select1)
C{P-QeU-=V)} C{PeQ)mS}

(co-sequence) (co-external)

C{(Pel)<(QeV)} C{(P3R)e(Q=S)}

Clooo} C{PeQ) C{PeQ)
(o1 (co-tidy) C(P} (co-left) c(0} (co-right)
C{3x.PeR} C{3x.o} )
m (Co—extrudel) W (CO'tldyl)
C{MxPe5xQ} (co-close) C{9x-} (co-tidy name)

C{ox.(PoQ)} C{-}

Fig. 8. Co-rules extending the system MAV1 to SMAV1, where x # R.

5.1 Extending from a sequent-like context to a deep context

Context reduction extends rules simulated by splitting to any context. This appears to be the first
context reduction lemma in the literature to handle first-order quantifiers. Of particular note is the
use of substitutions to account for the effect of existential quantifiers in the context. The trick is to
first establish the following stronger invariant.

LEMMA 5.1. Ifr C{ T }, then there exist formulae U; and substitutions o;, for 1 < i < n, and n-ary
killing context K{ } such that + To; ¥ U;; and, for any formula V there exist W; such that either
7({ M’W27-"7WH }

c{v}

W; = Vo; 3 U; or W; = o and the following holds:

Having established the above stronger invariant, the context lemma follows directly.

LEMMA 5.2 (CONTEXT REDUCTION). If+ Po % R yields that + Qo % R, for any formula R and
substitution of terms for variables o, then + C{ P } yields+ C{ Q }, for any context C{ }.

Proof. Assume that for any formula U, + S % U yields + T ¥ U, and fix any context C{ } such that
+ C{ S } holds. By Lemma 5.1, there exist n-ary killing context K{ } and, for 1 < i < n, P; such that

K{P,...,P,
either P; = o or there exists W; where P; = T ® W; and + S ® W;, and furthermore %
7<‘{ O vy © }
Since, by our assumption, also + T % W; holds for 1 < i < n, the proofm can be
C{T}
constructed. Therefore + C{ T } holds. O

Note that the case for existential quantifiers will not work for second-order quantifiers, since
termination of the induction is reliant on the size of the term-free part of the formula being reduced.
Thus the techniques in the above proof apply to first-order quantifiers only.
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5.2 Cut elimination as co-rule elimination

Q

For a rule of the form vk there is a corresponding co-rule of the form g where premise and

conclusion are interchanged and each formula is dualised using negation. The rules switch, fresh
and new wen are their own co-rules. Also the co-rule of the medial new rule is an instance of the
suspend rule. All other rules give rise to distinct co-rules, presented in Figure 8. Note co-rules with
no role in cut elimination are ommitted from the figure.

The following nine lemmas each establish that a co-rule is admissible in MAV 1. Only the following
co-rules need be handled directly in order to establish cut elimination: co-close, co-tidy name,
co-extrudel, co-selectl, co-tidyl, co-left, co-right, co-external, co-tidy, co-sequence and atomic co-
interaction. In each case, the proof proceeds by applying splitting in a shallow context, forming a
new proof, and finally applying Lemma 5.2. Each co-rule can be treated independently, hence are
established as separate lemmas.

LEMMA 5.3 (co-cLOSE). If+ C{ 9x.P @ Ux.Q } holds then+ C{ 9x.(P ® Q) } holds.

Proof. Assume that + (9x.P @ x.Q)o % R for some substitution of terms for variables o. By
Lemma 4.19, there exist S; and T; such that + (3x.P)o ® S; and + (Ux.Q)o # T;,for 1 < i < n, and
n-ary killing context such that the derivation
K{S;®T;:1<i<n}
R

holds. Also for some y such that y # 9x.P, y # Ux.Q and y # o, (9x.P)o = 3y.(P{Y/i}0o) and
(Ux.Q)o = Uy.(Q{Y/x}0o), where y # o is defined such that y does not appear in the domain of ¢
nor free in any term in the range of 0. Hence both + 9y.(P{Y/;}0) % S; and + Ny.(Q{Y/x}o) & T;
hold.

Hence, by Lemma 4.19, there exist U; and U; such that + P{Y/}o = U; and either U; = U; or

U, = I/Iy.Ul-, and also the derivation % holds.

13
Similarly, by Lemma 4.19, there exist W; and W; such that + Q{Y/, }o ® W; and either W; = W} or
. W,
W; = 9y.W,, and also the derivation Tl holds.

There are four cases to consider forleach i. Three of the cases are as follows.
o IfU; = I/Iy.Ui and W; = E)y.Wi then

Ny. (U, %3 Wl)
o IfU; = U;, y# U;, and W; = Sy.Wi, then
ay.(U; ~ ;)
Sy.(Ui %3 W,)
o IfU; = I/Iy.Ui and W; = I/Vi, such that y # Wl then
I/Iy.(Ui % W,)
VxU; 3 W,
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Thereby in any of the above three cases the following derivation can be constructed.
ty.((P e Qf¥}o 7 Ui 3 W)

ex@®Q»awny(awﬁg
Bx.(PeQ)oa3U; 3 W;

In the fourth case U; = U; and W; = W}, such that y# W; and y# U; yielding the following.

ty. (P e Q){¥}o 3 Ty » W)
Uy.(P ® Q){¥x}o) 3 U; 3 W;
(Ox.(P2Q))o 3 U; 3 W;

By applying one of the above possible derivations for every i, the following proof can be constructed.

o

K{Wyo:1<i<n}

‘7({ I/Iy.((P{y/x}ai’?Ui) ® (Q{y/x}aﬁ’Wi)) 11<i< n}
x| vy ((Po QUo7 Ti v W) 1<i<n
K{(Ox.(PeQ)oRU;ZW;:1<i<n}
Px.PeQ)o3K{U;ZW;:1<i<n}

(Ox.(PeQ)o 3 K{S;®T;:1<i<n}
(Bx.(P2Q))c 3R

Therefore, by Lemma 5.2, for all contexts C{ },if - C{ 9x.P @ Ux.Q } then+ C{Ux.(P® Q) }. O

LEMMA 5.4 (CO-TIDY NAME). If+ C{ 9x.o } holds then+ C{ o } holds.

Proof. Assume that + 9x.o % P holds. By Lemma 4.19, there exists Q such that + Q and % Hence

o

the following proof of P can be constructed: Q . Therefore, by Lemma 5.2, for any context C{ }, if

P
F C{ 3x.c } then+ C{ o }, as required. u]

LEMMA 5.5 (CO-EXTRUDEL). Ifx # Q andv+ C{ 3x.P ® Q } holds then+ C{ 3x.(P ® Q) } holds.

Proof. Assume that+ (3x.P ® Q)o ® V holds, where x # Q. Now, since y # (3x.P ® Q) and y # o,
we have (Ax.P @ Q)o 3V = (Jy.(P{Y/x}0o) ® Qo) ¥ V. So, by Lemma 4.19, there exist T; and U;
such that + y.(P{Y/;}o) 3 T; and + Qo 3 U, for 1 < i < n, and n-ary killing context such that the
derivation
K{T13U,....T, 53U, }
|4

holds. By Lemma 4.20, there exist R;. and UJI: such that P{y/x}0<vj/y} 3 RJ‘:, for1 < j < m;, and
m;-ary killing context K*{ } such that the derivation
K{R.RL,... R, }
T;
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holds. Hence the following proof can be constructed, where we appeal to @-conversion in the
conclusion.

o

K{K{e:1<j<m;}:1<i<n}
7({7(!‘{(P{y/x}g{v}/y}mR;)®(Qain):1sjsm,-}:1SiSn}

7<{ 7(:'{ (p{y/x}g{v}/y} ®Qg)7sR;i78U,~; 1<j<m } i1 SiSn}

7({70’{3y.(P{y/x}a®Qa)7?R;7in:1Sj3m,~};13i3n}

7({ Ely.(P{y/x}aéaQo-)?S"Ki{R;: 1 Sjgm,-}@Ui: 1 Sign}

Hy.(P{y/x}cr®Qo)787({ ‘](i{R;: 1<j<m } BU;:1<i< n}
Jy.(P{Y}oeQo)3K{T;®U;:1<i<n}
Jy.(P{¥x}o © Qo) 3V
Hence, by Lemma 5.2, if - C{ 3x.P ® Q }, where x # Q, then + C{ Ix.(P Q) }. u]

LEMMA 5.6 (co-TIDY1). If+ C{ 3x.o } holds thent+ C{ o } holds.

Proof. Assume that - Jx.oc # T holds. By Lemma 4.20, there exists U; such that + U, for 1 <i < n,

and n-ary killing context K{ } such that LS Ul"T' +> Un }. Hence the following proof of T can be
constructed:
K{e,. .0}
K{U,...,Uy} _
o7 T
Therefore, by Lemma 5.2, if - C{ Jxo } then + C{ o }, as required. u]

The above four lemmas are particular to MAV1. The following lemma is proven directly for MAV,
similarly to Lemma 4.2; however, for MAV1 the proof is more indirect due to interdependencies
between & and nominals.

LEMMA 5.7 (CO-LEFT AND CO-RIGHT). If+ C{ P & Q } holds then both+ C{ P } and+ C{ Q } hold.

The proofs for the four co-rule elimination lemmas below are similar to the corresponding cases
in MAV [23].

LEMMA 5.8 (CO-EXTERNAL). If+ C{ P ® (Q @ R) } holds then+ C{ (P @ Q) ® (P ® R) } holds.
LEMMA 5.9 (CO-SEQUENCE). If+ C{(P<Q)® (R<S) } holds then+ C{ (P @R) <(Q ®S) } holds.
LEmMA 5.10 (co-TiDY). If+ C{ o ®o } holds, thent+ C{ o } holds.

LEMMA 5.11 (ATOMIC CO-INTERACTION). If+ C{ a ® @ } holds then+ C{ o } holds.
5.3 The proof of cut elimination
The main result of this paper, Theorem 3.3, follows by induction on the structure of P in a formula of

the form + C{ PoP } by applying the above eight co-rule elimination lemmas and also Lemma 4.2

in the cases for all and some.
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Proof. The base cases for any atom « follows since if - C{ @ ® ¢ } then + C{ o } by Lemma 5.11.
The base case for the unit is immediate. As the induction hypothesis in the following cases assume

for any context C{ }, c{ PoP } yields C{ » } and r Z){ 0e0 } yields D{ o }.
Consider the case for times. Assume that v C { PoQe (ﬁ 78@) } holds. By the switch rule,

FC { (P ® ﬁ) 2l (Q ® @) } holds. Hence, by the induction hypothesis twice, - C{ » } holds. The case
for par is symmetric to the case for times.
Consider the case for seq. Assuming that + C { (P<Q)® (1_3 < @) } holds, by Lemma 5.9, it holds

that+ C { (P ® ﬁ) < (Q ® @) } Hence, by the induction hypothesis twice, F C{ o } holds.
Consider the case for with. Assume that F C{ (P&Q)e® (F @5) } holds. By Lemma 5.8, F

C{ ((P & Q) ®ﬁ) ® ((P& Q) ®§) } holds. By Lemma 5.7 twice, F C{ (P ®ﬁ) ® (Q ®§) } holds.

Hence by the induction hypothesis twice, - C{ o ® o } holds. Hence by Lemma 5.10, - C{ o } holds,
as required. The case for plus is symmetric to the case for with.

Consider the case for universal quantification. Assume that + C { Vx.P® Hx.I_J} holds. By

Lemma 5.5, it holds that + C{ Hx.(Vx.P ® F) } since x # Jx.P. By Lemma 4.2, + C{ Hx.(P ® ﬁ) }

holds. Hence by the induction hypothesis, - C{ 3x.o } holds. Hence by Lemma 5.6, + C{ o } holds, as
required. The case for existential quantification is symmetric to the case for universal quantification.

Consider the case for new. Assume that + C { Ux.P @ 9x.P } holds. By Lemma 5.3, it holds that

F C{ Sx.(P ® 1_3) } Hence by the induction hypothesis, - C{ 9x.c } holds. Hence by Lemma 5.4,
+ C{ o } holds, as required. The case for wen is symmetric to the case for new.
Therefore, by induction on the structure of P, if - C { PsP } holds, then + C{ » } holds. o

Notice that the structure of the above argument is similar to the structure of the argument for
Proposition 3.2. The only difference is that the formulae are dualised and co-rule lemmas are applied
instead of rules.

5.4 Discussion on alternative presentations of rules for MAV1

Having established cut elimination (Theorem 3.3), an immediate corollary is that all co-rules in
Fig. 8 are admissible. This can be formulated by demonstrating that linear implication coincides
with the inverse of a derivation in the symmetric system SMAV1.

P
COROLLARY 5.12. + P —o Q in MAVT if and only if Q in SMAV1.

Proof. Firstly, assume + P — Q in MAV1, in which case the following can be constructed in
SMAV1:

P
P®(F7?Q)
(P@ﬁ)??Q .

Q
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For the converse, assume g in SMAV1; hence
P3P
P3Q

can be constructed. Thereby by Lemma 4.2 and Lemmas 5.3 to 5.9, the above derivation in SMAV1
can be transformed into a proof in MAV1T. u]

The advantage of the definition of linear implication using provability in MAV rather than
derivations in SMAV1, is that MAV1 is analytic [9]; hence, with some care taken for existential
quantifiers [5, 34], each formula gives rise to finitely many derivations up-to congruence. In contrast,
in SMAV1, many co-rules can be applied indefinitely. Notice co-rules including atomic co-interaction,
co-left and co-tidy can infinitely increase the size of a formula during proof search.

A small rule set. Alternatively, we could extend the structural congruence with the following.

9x.P=Ponlyifx # P Vx.P =Ponlyifx # P (vacuous)

Vacuous allows nominals to be defined by the smaller set of rules close, medial new, suspend, new
wen, with name, and all wen. Any formula provable in this smaller system is also provable in
MAV1, since all rules of MAV1 can be simulated by the rules above. Perhaps the least obvious

9x.Ux.P -
T 9x.P by the neI«:Iv w;n rule and both 9x.Ux.P = Ux.P and
x.

9x.P = Ux.9x.P hold using the vacuous rule, we have .

case is the fresh rule, where since

Conversely, vacuous is a provable equivalence in MX\.H; hence, by inductively applying cut
elimination to eliminate each vacuous rule in a proof using the smaller set of rules, we can obtain a
proof with the same conclusion in MAV 1. The disadvantage of the above system is that the vacuous
rules can introduce an arbitrary number of nominal quantifiers at any stage in the proof leading
to infinite paths in proof search, i.e., the above system is not analytic. Indeed the multiset-based
measure used to guide splitting would not be respected, hence our cut elimination strategy would
fail. None the less, the smaller rule set above offers insight into design decisions.

Alternative approaches to cut elimination. Further styles of proof system are possible. For
example, again as a consequence of cut elimination, we can show the equivalence of MAV1 and a

system which reduces the implicit contraction in the external rule to an atomic form % © 2 inwhich
additional medial rules play a central role for propagating contraction [7, 10, 47]. Similarly, the
implicit vacuous existential quantifier introduction can be given an explicit atomic treatment [50].
The point is that, although the cut elimination result in this work is sufficient to establish the
equivalent expressive power of systems mentioned in this subsection, further proof theoretic insight
may be gained by attempting direct proofs of cut elimination in such alternative systems. Indeed a
different approach to cut elimination is required for tackling MAV2 with second-order quantifiers.

Note on probabilistic choice. Insight from investigating the proof theory of MAV1 led to
the surprising observation that probabilistic choice has similar proof theoretic properties to new.
A proof theory of MAV extended with sub-additive operators is explored in related work [24].
The sub-additives, similarly to nominal quantifiers which lie between universal and existential
quantifiers, lie between the traditional additives with and plus. Sub-additives can either be self-dual,
similarly to V, or de Morgan dual, similarly to 1 and 3 — controlling distributivity properties which
are undesirable when embedding probabilistic processes, much like the quantifiers in this work
avoid undesirable distributivity properties when embedding processes with private names.

We remark that adapting recent work on splitting in subatomic logic [54] may help explain
general patterns emerging, connecting the nominal quantifiers and sub-additives. Subatomic logic
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Complexity class Linear logic Calculus of structures

NP-complete MLL1 with functions [30] BV1 With functions
(Proposition 6.3)

PSPACE-complete MALL1 without functions [33] MA\(/E] With?’t‘}t fu()nzc;cions
roposition 6.

NEXPTIME-complete | MALL1 with functions [34, 36] MAVT with functions
(Proposition 6.1)

Undecidable MAELL [33] and MLL2 [35] NEL [49]

Fig. 9. Complexity results.

may also be used to provide a more concise proof of splitting by exploiting the evident general
patterns in the case analysis. Beside abstractly explaining general patterns, the study of MAV1 in
terms of subatomic logic would likely expose alternative formulations of the rules of MAV1.

6 DECIDABILITY OF PROOF SEARCH

Here we identify complexity classes for proof search in fragments of MAV1. The hardness results in
this section are consequences of cut elimination (Theorem 3.3) and established complexity results
for fragments of linear logic and extensions of BV.

NEXPTIME-hardness follows from the NEXPTIME-hardness of MALL1 [34]; while membership in
NEXPTIME follows a similar argument as for MALL1 [36] (in a proof there are at most exponentially
many atomic interaction rules, each involving quadratically bounded terms).

PROPOSITION 6.1. Deciding provability in MAV1 is NEXPTIME-complete.

If we restrict terms to a nominal type, i.e. some can only be instantiated with variables and
constants, we obtain a tighter complexity bound. PSPACE-hardness is a consequence of the PSPACE-
hardness of MAV [23], which in turn follows from the PSPACE-hardness of MALL [33]. Membership
in PSPACE follows a similar argument as for MALL1 without function symbols [34].

PROPOSITION 6.2. Deciding provability in MAVT without function symbols is PSPACE-complete.

If we consider the sub-system without with and plus, named BV1, we obtain a tighter complexity
bound again, even with function symbols in terms. NP-hardness is a consequence of the NP-hardness
of BV [28]; while membership in NP follows a similar argument as for MLL1 [36]

PROPOSITION 6.3. Deciding provability in BV1 is NP-complete.

For problems in the complexity class NEXPTIME, we can always check a proof in exponential
time. The high worst-case complexity means that proof search in general is considered to be
infeasible. Implementations of NEXPTIME-complete problems that regularly work efficiently,
include reasoning in description logic ALCI (D) [37].

Figure 9 summarises complexity results for related calculi. Notice the pattern that each fragment of
linear logic has the same complexity as the calculus that is a conservative extension of that fragment
of linear logic (with mix), where the extra operator is the self-dual non-commutative operator seq.
The complexity classes match since the source of the NP-completeness in multiplicative-only linear
logic (MLL) lies in the number of ways of partitioning resources (formulae), while the mix rule and
sequence rule are also ways of partitioning the same resources.

An exceptional case is that BV extended with exponentials (NEL) is undecidable, whereas the
decidability of multiplicative linear logic with exponentials (MELL) is unknown.” However, by

2MELL was claimed to be decidable in [3], but this was later refuted [51].
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including additives to obtain full propositional linear logic (MAELL or simply LL) provability is
known to be undecidable.

By the above observations, the complexity of deciding linear implication for embeddings of finite
name passing processes, as in z-calculus, is in PSPACE. However, extending to finite value passing
processes where terms constructed using function symbols can be communicated, e.g. capturing
tuples in the polyadic m-calculus [40], the complexity class increases, but only for processes
involving choice. Further extensions to MAV1 introducing second-order quantifiers, exponentials
or fixed points would lead to undecidable proof search [32, 35, 49].

7 CONCLUSION

This paper makes two significant contributions to proof theory: the first cut elimination result for a
novel de Morgan dual pair of nominal quantifiers; and the first direct cut elimination result for first-
order quantifiers in the calculus of structures. As a consequence of cut-elimination (Theorem 3.3),
we obtain the first proof system that features both non-commutative operator seq and first-order
quantifiers V and 3. A novelty of the nominal quantifiers I and 9 compared to established self-dual
nominal quantifiers is in how they distribute over positive and negative operators. This greater
control of bookkeeping of names enables private names to be modelled in direct embeddings of
processes as formulae in MAV 1. In Section 3, every rule in MAV1 is justified as necessary either: for
soundly embedding processes; or for ensuring cut elimination holds. Of particular note, some rules
were introduced for ensuring cut elimination holds in the presence of equivariance.

The cut elimination result is an essential prerequisite for recommending the system MAV1 as
a logical system. This paper only hints about formal connections between MAV1 and models of
processes, which receives separate attention in a companion paper [26]. In particular, we know that
linear implication defines a precongruence over processes embedded as formulae, that is sound
with respect to both weak simulation and pomset traces.

Further to connections with process calculi, there are several problems exposed as future work.
Regarding the sequent calculus, in the setting of linear logic (i.e., without seq), it is an open problem
to determine whether there is a sequent calculus presentation of new and wen. Regarding model
theory, a model theory or game semantics may help to explain the nature of the de Morgan dual pair
of nominal quantifiers, although note that it remains an open problem just to establish a sound and
complete denotational model of BV. Another open question is whether quantifiers new and wen are
relevant in a classical or intuitionistic setting, or whether these operators are uniquely interesting
in a linear setting. Since new must distribute over classical disjunction (recall, in contrast, new does
not distribute over multiplicative disjunction), nominal operators new and wen likely collapse to
an established self-dual nominal operator in the classical setting; hence wen is probably unrelated
to the ‘generous’ operator proposed in related work on stratifiable languages [15]. Regarding
implementation, it is a challenge to reduce non-determinism in proof search [2, 12, 29]; a problem
that can perhaps be tackled by restricting to well-behaved fragments of MAV1 or by exploiting
complexity results to embed rules as constraints for a suitable solver. Regarding proof normalisation,
systems including classical propositional logic [55], first-order logic [55], intuitionistic logic [20]
and NEL (BV with exponentials) [52] satisfy a proof normalisation property called decomposition
related to interpolation; leading to the question of whether there is an alternative presentation of
the rules of MAV 1, for which a decomposition result can be established. Finally, an expressivity
problem, perhaps related to decomposition, is how to establish cut elimination for second-order
extensions suitable for modelling infinite processes.

Acknowledgements. We thank the anonymous reviewers, whose thorough reading led to im-
provements in the presentation of MAV1.
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A ELECTRONIC APPENDIX

ProPosSITION A.1 (REFLEXIVITY: PROPOSITION 3.2). For any formula P, + P#P holds, ie,+ P —o P.

Proof. The proof proceeds by induction on the structure of a formula P. The base cases for any
atom « follows immediately from the atomic interaction rule.The base case for the unit is immediate
by definition of a proof. For the following inductive cases assume that - P % P and - Q % Q hold.

Consider when the root connective in the formula is the ® operator. Observe, by definition,
PeQ)®(PeQ) = P®Q % (PeQ) and by applying the switch rule and then the induction
hypothesis we have the following proof:

(ﬁ@P) ®(§78Q)
P30~3(PeQ)

The case when the root connective is the par operator is symmetric to the case for times.
Consider when the root connective in the formula is the seq operator. We have, by definition,

(P<Q)®(P<Q) = (ﬁ < @) % (P < Q) and, by applying the sequence rule and then the induction
hypothesis, the following proof holds:

(1_37?P)j(§7S’Q) |
(P<Q)5 -0

Consider when the root connective in the formula is the with operator. By definition we have
(P&Q)®(P&Q)= (F ® @) % (P & Q) and the following proof holds.

(F??P)Ojga?y Q)
((P=g)~r)«((P=0)~0)
(ﬁ@a) % (P&Q)

by the induction hypothesis

by the left and right rules

by the external rule

The case for when plus, @, is the root connective is symmetric to the case for with.

Consider when the root connective in the formula is V. By definition, ¥x.P 3 Vx.P = 3x.P3 Vx.P
and the following proof holds:

ﬁ by the tidyI rule

——=—— by the induction hypothesis
v (P P)
— by the select1 rule
Vx. (Ex.P % P)

————— by the extrudel rule
dx.P ¥ Vx.P

The case for when 3 is the root connective is symmetric to the case for V.
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Consider when the root connective in the formula is V1. By definition Vix.P % Wx.P = 9x.P % Ux.P

and the following proof holds:
ﬁ by the tidy name rule

+ by the induction hypothesis
nx. (P P)
———— by the close rule
9x.P 3 Ux.P
The case for when the root connective is 9 is symmetric to the case for 1.
Hence, by induction on the number of connectives in the formula, reflexivity holds. o

LEMMA A.2 (UNIVERSAL: LEMMA 4.2). If+ C{ Vx.P } holds then, for all terms v, + C{ P{%/x} }
holds.

Proof. We require a function over formulae s,(T) that replaces a certain universal quantifier in T
with a substitution for a value v. The universal quantifiers to be replaced are highlighted in bold
V. Note that during a proof the bold operator may be duplicated by the external rule and medial1
rule, hence there may be multiple bold occurrences in a formula. The function is defined as follows,
where © € {<,%, ®, @, &} is any binary connective, O € {V¥, 3,1, 3} is any quantifier except bold
universal quantification and x € {«, @, o} is any constant or atom.

so(Vx.T) = s,(T{°/}) 5o (0x.T) = Ox.5,(T) so(TOU) =5,(T) ©s,(U) so(K) =k

In what follows we use that s,(C{ U }) = C’{ s,(U’) }, for some context C{ } and U’ such that
C’{ }is obtained from C{ } by applying the s, function and U’ is obtained by substituting free
variables in U, that are bound by V quantifiers in the context C{ }, with v.

We shall prove a stronger statement in the following: for every R, if R holds then for all terms
v, F s, (R) holds.

Without loss of generality, we can assume that the bound and the free variables in R are pairwise
distinct and that the bound variables in R are also distinct from the variables in v. This simplifies
the proof below since substitutions of V-quantified variables commute with other connectives and
quantifiers in R.

For the base case, s,,(R) = R, in which case trivially if + R then F s, (R), for example where R = o.

Consider the case when the bottommost rule in a proof'is an instance of the extrude1 rule involving
% ,where x # U and + C{ Vx.(T 3 U) }.

By the induction hypothesis,  s,(C{ Vx.(T # U) }) holds. Now the following equalities hold.

so(C{Vx.(T3U) P = C{so((T"3UN{"x})}

C'{so(T'{®s}) 3 so(U") }
so(C{Vx.T3U })

a bold universal quantifier, as follows,

Hence F s,(C{ Vx.T ® U }) holds as required.
Consider the case where the bottommost rule of a proof is an instance of the tidyI rule of the

% , where + C{ o } holds. By the induction hypothesis, + s,(C{ ¢ }) holds. Since
X.0
so(C{ Vx.0 }) =5,(C{ > }), we have } 5,(C{ Vx.c }) holds, as required.
Consider the case where the bottommost rule of a proof is an instance of the all name rule of the
C{2y.Vx.P
formCiVyx.S)yc.Pi ,where+ C{ 9y.Vx.P } holds. By the induction hypothesis, - s, (C{ 9y.Vx.P })
holds. Observe that the following equalities hold, by definition of function s,,.

so(C{Vx.9y.P }) = C'{ so((By.P){*k}) } = C'{ By.so(P'{"/}) } = 5,(C{ Dy.Vx.P })

form
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Hence + s,(C{ 9y.Vx.P }) holds, as required. The case where all name involves new is similar.

Consider the case when the bottommost rule does not involve a bold universal quantifier. We
show here one instance where the rule involved is extrudel; the other cases are similar. So suppose
the bottommost rule instance is

C{Vx.(T=U)} .
C{Vx.T>3U}
By the induction hypothesis, + s,(C{ Vx.(T # U) }). So, since
so(C{Vx(T3U) }) = C'{ Vx.(so(T") 3 5,(U")) }
we have F C’{ Vx.(s,(T") # s,(U’)) } also holds. Hence, since
so(C{Vx.T=U })=C'{Vx.5,(T") % s,(U") }

and
C'{Vx.(so(T") 355 (U")) }
C'{Vx.s,(T")%s,(U’") }
we have + s,(C{ Vx.T # U }) holds, as required.
The statement of the lemma is then a special case of the stronger statement established by
induction. If - C{ Vx.T }, where no further bold universal quantifiers occur in the context, then
+ C{ T{%/} } holds, since in such a scenario s,(C{ Vx.T }) = C{ T{%/} }. u]

LEmMMA A.3 (LEMMA 4.5). Assume that] is a finite subset of natural numbers, P; and Q; are formulae,
fori € I, and K{ } is akilling context. There exist killing contexts K°{ } and K'{ } and sets of natural
7(0{Pj:j€]}<7(1{Qk:k€K}

W{Pi<QiIi€I} '
Proof. Proceed by induction on the structure of the killing context. The base case is immediate.

Consider a predicate of the form Ux.K{ P; <Q;: i € I }. By the induction hypothesis, assume
there exists K°{ } and K*{ } such that

K{Pi:je]}<K'{Qc:keK}
(I({PiinliEI}

where J C I and K C I. There are three cases to consider.
IfK°{ P;: j € J } = e, then we have derivation

Ux.(c<K'{ Qx: k€K })

numbers | C I andK C I such that the following derivation holds:

by using =
MK Qp:kek} ) omE
I/Ix.7({P,~<Q,~:i€I}
IfK'Y{ Qi: k € K } = o, then we have derivation
Ux.(K{Pj:je]}<o)
using =

Ux.K{ Pj:je]}o .
I/IX.(}({P,'<Q1'Z i GI}
Otherwise, ‘KO{ Pi:je] } # oand K'{ OQx: k € K } # o in which case the medial new rule can
be applied as follows:
Ux. K Pjrje]}«UxK{Qu:keK}
Ux.(K{Pj:je ]} <K'{Qc:keK})
I/Ix.‘K{P,-<Q,-:i€I}

by the medial new rule
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In each of the three cases above, killing contexts of the correct form are obtained. The arguments
in the cases of universal quantifiers and with follow a similar pattern. u]

LEMMA A.4 (AFFINE: LEMMA 4.18). Any derivation g is bound such that |P| < |Q].

Proof. The proof proceeds by checking that each rule preserves the bound on the size of the
formula, from which the result follows by induction on the length of a derivation.

Consider the case of the close rule. |Fx.P % 9x.Q|cc = |Ploce B 1Qlpee = [Wx.(P % Q)| e, Since
P #oand Q # o, and [Ux.P % 9x.Q|, = |P|, + (1 + |Ql5) > |IPl5 + |Ql, = [Hx.(P % Q).

Consider the case of the fresh rule. For the occurrence count, |9x.P|,., = |x.P|,.. and the wen
count strictly decreases as follows: |9x.P|, = 1 + |P|y > |P|, = |Ux.P|,.

Consider the case of the extrude new rule, where Q # o. If P = o, then the occurence count is
such that [Ux.P % Q|,.. = {{0,0}} B |Ql,cc > 1Qloce = Ux.(P % Q)|,ec- If however P # o, then
[Ux.P % Qlyee = |Ploce B 1Qlpce = [Ux.(P 3 Q)|,e.- Furthermore, for the new count, the following
inequality holds: [Mx.P % Q|,; = (1 + |P|,) |Ol; = 1 + |P|4|Ol; = [Ux.(P 3 Q)|

Consider the case of the external rule, where R # . For the occurrence count, by distributivity of
U over H, the following multiset equality holds:

|(P& Q) 7y}2|OCC = (|P|OCC U |Q|OCC) Bﬂ |R|OCC
= (|P|OCC E |R|OCC) u (|Q|OCC E |R|CICC)
= |(P3R) & (Q 3 R)locc

For the wen count

|(P& Q)3 Rl = (IPl5 + 1Ql5) IRl5 = [Pl5|Rl; + [Ql5|Rl; = [(P 3 R) & (Q 3 R)l,

and similarly for the new count.

Consider the case of the suspend rule, where P # o and Q # o. For the occurrence count,
19%.P < 3%.0loce = IPloce ¥ 1Qloce = 19%.(P < Q)loce and [9%.P 3 3%.0uce = IPloce B [Qloce =
|9x.(P % Q)|,.. for par and seq respectively. For the wen count for either operator, © € {%, <}, the
following strict inequality holds, noting |P|, > 1 for any formula:

|9x.P © 9x.Ql, = (1 +|Ply) (1 +1Ql5) = [P, + [PL,|Ql, + [Ql5 > 1+ [P,|Ql, = [9x.(P < Q)5

Consider the case of the left wen rules, where x # Q and Q # o. For the occurrence count, there
are four cases covering the operators seq and par.

i IfP =o then’ for seq |9x'(P < Q)lOCC = |Q|0CC E {{0’ 0}} HJ |Q|OCC = |9x'P < Q|OCC'

o If P # o then, for seq: [9x.P < Qloce = [Ploce W |Qloce = [9%.(P < Q)loee-

e If P = o then for par: [3x.(P % Q)|oec = [Qloee T {{0,0}} B [Qlyee = [9x.P % Qlge-

o If P # o then for par: [9x.P 3 Q|,cc = [Ploce B Qlpee = 19%.(P % Q)| yee-
For the wen count [9x.P © Ql; = (1+ |P|5)[Ql5 = |Ql; + [P5|Ql5 = 1+ [P|5|Qly = [9x.(P © Q)l,
holds, for © € {#, <}. Also, for the new count [9x.P < Q|,; = max(|P|,, |Ql,) = [9x.(P < Q)|, and
[9x.P % Ql,; = |Plu|Oly = 19x.(P % Q)|,. The case right wen follows a symmetric argument.

Consider the case for the extrude rule, where Q # o. [Vx.(P % Q)|,cc T [Vx.P % Q|,.. by the

following: {{0}} U (IPloce  Qloee) © ({01} B 1Qlnce) U (IPloce B 1Qlnce) = ({03} U [Ploge) B

|Q|OCC'
Consider the case for the mediall rule, where P # o and Q # o. By distributivity of W over L,

V(P < Q)loee = {{O}U(IPloce ¥ 1Qlocc) = ({{0}} L [Ploce)W ({{0}} L [Qlgee) = [Vx.P < Vx.Qlye
Also |Vx.(P<Q)|, = [Vx.P < V¥x.Q|, and |Vx.(P < Q)|, = [Vx.P < Vx.0|,.
For the select rule, |3x.P|,.c = {{0}} U |P|oce T IPloce = |P{t/x}|occ, by Lemma 4.16.
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Consider the case for the switch rule, where P # o and R # . If Q # o, then, since R # o we have
{{0}} © |R|,cc and hence |P|,.c = |Plocc B {{0}} T |P|ycc B |R|oee; and therefore the following
holds since W distributes over H.

|P®(Q7?R)|OCC |P|(JCC Hﬂ (|Q|OCCHﬂ |R|OCC)
(|P|OCC Bﬂ |R|OCC) EH (|Q|OCC HH |R|0CC)
(IPloce ¥ 1Qloee) B IRlpee = 1(P € Q) 3 Ry,

If Q = o then, since {{0}} C |P|,.. and {{0}} C |R| .., the following hold.
|P e (o 75?R)locc = |P|occ Y |R|occ - |P|occ E |R|occ =|(Peo) 7§)R|occ

Consider the case of the sequence rule, where P # cand S # o. If Q # o and R # o, then the
following holds since W distributes over H.

(P~ R)<(Q7S)| (IPloce B [Rloce) W (1Qloce B ISloce)
(IPloce B [Rloce) ¥ (1Q1oce B ISloce) ¥ (IPloce B 1Sloee) ¥ (101pce B IRl oec)
(IPloce ¥ 1Qlpce) B (IRloee ¥ 1Sloee) = [(P < Q) ® (R% )y
If Q = o and R # o, then, since {{0}} C |R|,.., and hence |S|,.. = |S|occ B {{0}} © |S|oce B IRl pces
therefore since W distributes over H.
|(P7?R) < (O 73)5)'000 = (lplocc s |R|occ) Y |S|occ C (|P|occ i |R|occ) Y (|P|occ H |S|occ)

= |P|occ H (|R|occ Y |S|occ) = |(P 4 O) &l (R & S)locc

A symmetric argument holds when Q # cand R = o.

If Q =candR = o, then {{0}} C |P|,.c and {{0}} C |S],cc; hence the following strict inequality
holds: [(P 3 2) < (e 3 5)|occ = [Ploce W [Sloce E [Ploce B [Sloee = [P <2) F (2 <S)]pec-

Consider the case of the medial new rule where P # o and Q # o. For the occurrence count
the equality |Ux.(P<Q)lpec = |Ploce B 1Qloce = [Mx.P<Mx.Q|,.. holds. For the wen count,
[Ux.(P<Q)l, = |P|5|Ql; = |[HUx.P<Ux.Q|,. For the new count the following equality holds:
[Wx.(P < Q)l, = 1+ max(|P|y, |Ql,) = max(1 + |P|, 1+ [Ql,) = [Wx.P <Ux.Q|y,.

Consider the case for the medial rule, where either P # o or R # o and also either Q £ cor S # o.
When all of P, Q, R and S are not equivalent to the unit, we have the following.

[(P&R) <(Q&S)|pec = (IPloce U IRloee) ¥ (1Qoce L Sloce)

(IPloce U Rloce) ¥ (1Q1oce U 1Sloce) ¥ (IPloce U ISloce) ¥ (IQloce U IRloce)
(IPloce ¥ 1Qloce) U (IRloee ¥ ISloee) = I(P < Q) & (R <)l o

For when exactly one of P, Q, R and S is equivalent to the unit, all cases are symmetric. Without
loss of generality suppose that S = o (and possibly also Q = o, but R # o). By distributivity of
over LI the following holds.

|(P&R) < (Q & °)|occ

I

occ

.

I

(IPloce U Rlgce) ¥ (1Qloce L {{0}})
(IPloce U Rlpee) ¥ (1Qlpce U IRl oee)
(IPloce ¥ 1Ql0ce) U IRloce = (P < Q) & (R <)o,
There is one more form of case to consider for the medial: either P # o, Q = o, R=ocand S # o;
or P =o,Q % o, R # cand S = o. We consider only the former case. The later case, can be
treated symmetrically. Since P # o and S # o, {{0}} C |P|,.. and {{0}} T |S|,cc. Therefore,
|P|occ U {{0}} C |P|occ U |S|occ and |Q|occ U {{0}} - |P|occ u |S|OCC‘ Hence, we have established
that (|P|yee U {{0}H) ¥ (IQloee U {{0}}) T IPloce U [S|oce- Note that the restriction on the medial
rule, either P # o or R # o and also either Q # o or S # o, excludes any further cases. Hence we
have established that |[(P & R) < (Q & S)|pcec E (P <Q) & (R < S)|,cc-

For the with name rule li.P & Dx.Q|occ = |Plpec U0l pee = |Dx.(P & Q)iocc, where O € {1, 3}.
For the new count |Ux.P&WUx.Q|; = 2+ |P|y; + |Qly > 1+ |Ply + |Qly = |Hx.(P & Q)| and

I
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|9x.P & 9x.Q|,; = |9x.(P & Q)|,. Similarly, |9x.P & 9x.Q|, > |9x.(P & Q)|,. For left name, right
name and all name, the size of formulae are invariant.
The cases for the rules tidy, tidy name, left, right, atomic interact are established by the following

inequalities: |°|occ - |°&°|occa |°|occ L |I/Ix-°|occ> |°|occ - |57?a|occ’ |P|occ C |P®Q|acc and
|Q|OCC - |P eanOCC'
Hence the lemma holds by induction on the length of the derivation. u]

LEmMMA A5 (LEMMA 4.20). If+ 3x.P ¥ Q, then there exist formulae V; and values v; such that
Vi, Vo, ...V, .
7({ 1, V2 n } andlf

F P{%/,} 3 V;, where 1 < i < n, and n-ary killing context K{ } such that 0

K{ } bindsy theny # (Ix.P).

Proof. The proof proceeds by induction on the size of the proof in Definition 4.15, until the
principal exists operator is removed from the proof, according to the base case. In the base case,
I{°s}»U
Ix.T3U
+ T{%/x} ® V holds; hence splitting is immediately satisfied. As in every splitting lemma, there are
commutative cases for new, wen, all, with, times and two for seq.
Consider the commutative case induced by the external rule. The bottommost rule is the form

the bottommost rule in a proof is an instance of the select rule of the form » where

xT3UW&IxTIVIW)3P
TRU&V)IWRP

where it holds that + (Ix. T3 U ® W) & (Ix.T 3V ® W))® P. By Lemma 4.19, + Ix.T3U 3 W ¥ P
and + Ix.T ® V 3 W ® P; and furthermore |Ix.T3U 3 WX P| C |Ix.T® (U & V)3 W ® P| and
|Fx.T3V3W=P|C |Ix.T (U &V)® W % P| hold. Hence, by the induction hypothesis, there
exist Q; and u; such that F T{"//,} # Q;, for 1 < i < m, and R; and v; such that  T{%/,} ® R}, for
1 < j < n; and m-ary and n-ary killing contexts K°{ } and K'{ } such that the derivations (1)
and (2) below hold.

K{Q1,...,0m }&«K'{Ry,...,Ry }

K{Q1....0m} KY{Ri....Ry} USW=aP)&(V3 W5 P)
UBW=P VIW®HP (U&V)3sW=3P
(1) (2) (3)

Thus the derivation (3) above can be constructed. Notice that K°{ }&K{ } is an m + n-ary killing
context, as required.
Consider the commutative case induced by the extrudel rule. In this case, the bottommost rule is

Vy.3x.T3URV)3 W
xTHVyURVAIW

assuming y # (Ix.T 3 V) where + Vy.(3x.T ® U ® V)3 W holds. By Lemma 4.2, for every variable z,
F(@x.T3U= V){Z/y} % W holds. Furthermore, by definition of substitution (Ix.T 3 U % V){Z/y} 3
W=3xT>® U{z/y} 3V %W, since y # (3x.T # V). Now observe the strict multiset inequality
|3x.T 3U{7,} 3V Wi C |3x.T ® Vy.U ® V ® W| holds; hence, by the induction hypothesis, for
every variable z, there exist formulae P? and values v7 such that - T{Uiz /x} % P? holds, for1 < i < n,
and n-ary killing context K{ } such that derivation (4) below can be constructed. Hence, for
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z # (Vy.U 3 V 3 W), the derivation (5) below can be constructed:
Vz.K{ P7,... P2}
K{Pf...Pi ) vz (U{F,}»Vvaw)
U{#F,} 3vaw VyUsVIW
(4) (5)

Notice that Vz.K{ } is a n-ary killing context as required.

Consider the commutative cases involving the sequence rule. We present the scenario where the
principal formula 3x.U moves entirely to the left hand side of seq operator. The cases where the
principal formula moves entirely to the right hand side of the seq operator and the commutative
case for times, are similar to the cases presented below. In the scenario we consider, the bottommost
rule in a proof is of the following form:

(@x.UVaIW)<P)=BQ
AU (V<-P)ZW=BQ

such that + ((3x.U # V @ W) < P)% Q holds. By Lemma 4.19, there exist R; and S; such that + Ix.U %
VZWZR; and+ P3 S, hold, for 1 < i < n, and n-ary killing context K{ } such that the derivation

R{<S4,...,R,<S
ARy <81, R <Sn } holds, and furthermore the size of the proof of Ax.UXV 3 W # R; is

Q
bounded above by the size of the proof of (Ix.U ® V # W) < P) # Q hence strictly bounded above
by the size of the proof of Jx.U % (V < P) ® W % Q. By the induction hypothesis, for 1 < i < n,

there exist formulae P]’.' and terms t; such that r U{t; /X} 73 PJ‘ for 1 < j < m;, and killing contexts

if pi i
Ki{ } such that the derivation x E/IZ;,I;V‘ '7?’1;'”" } holds. Hence the following derivation can be

constructed, as required.

x{e{Pl,....°L }.,....Kk"{Pr,....PL }}
K{V3WAR;:1<i<n}
K{(V3WBR)<(P3S;):1<i<n}
K{(V<P)ZRWBR;«S;:1<i<n}
(V<P)ZW3K{R;<S1,...,R, <5, }
(V<P)3W=Q

Notice that 7({ KDY, LK) } isa )1, m;-ary killing context as required.
Consider the commutative case induced by the extrude new rule. In this case, the bottommost
rule of a proof is of the form

Ny.(3x.PBQBR)®S
dx.P3Uy.QBRAS

, where y # 3x.P % R and + Uy.(3x.P 3 Q ® R) % S holds.

By Lemma 4.19, there exist T and U such that - Ix.P% Q% R® U, y # T holds and either T = U or
T = 3y.U, and also % Furthermore, the size of the proof of 3x.P % Q ® R % U is bounded above by
the size of the proof of Uy.(3x.P # Q # R) » S and hence strictly bounded above by the size of the
proof of Ix.P3Uy.Q % R7 S, enabling the induction hypothesis. Hence, by the induction hypothesis,
there exist formulae V; and terms ¢; such that + P{ ’i/x} % V; holds, for 1 < i < n, and n-ary killing

(K{Vl’—’vn} holds. Observe that, either T = U and y # U,

context K{ } such that the derivation EVEL
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and hence we have derivation (6) below; or T = 3y.U and hence we have derivation (7) below.
Thereby we can construct the derivation (8) below.

Wy K{Vi,....V, }

Ny.(Q 3R> V) Ny.(Q 3R> V)

Uy.(Q3R»U) Wy.(Q%R)33y.U Ny Q3R>T

NyQ3R5T  Wy.Q3R39y.U Ny.Q R5S
(6) (7) 8)

Observe that Uy.K{ } is a n-ary killing context as required.
Consider the commutative case induced by the right wen rule. In this case, the bottommost rule
of a proof is of the form
y(Tx.P3QFR)AS
Ax.P32y.Q3 R3S

, where y # 3x.P 3 R.

By Lemma 4.19, there exist T and U such that - Ix.P3 Q% R3 U,y # T and either T = U or
T = Ny.U, and also % Furthermore, the size of the proof of 3x.P % Q ® R % U is bounded above by
the size of the proof of 3y.(3x.P % Q # R) # S and hence strictly bounded above by the size of the

proof of 3x.P % 9y.Q ® R3S, enabling the induction hyothesis. Hence, by the induction hypothesis,
there exist formulae V; and terms ¢; such that + P {tf/x} %3 V;, for 1 < i < n, and n-ary killing context

K{Vi,....Vn }
7({ }SuCh thatw

below holds; or T = Uy.U hence the derivation (10) below holds. Hence the derivation (11) below
can be constructed:

. Observe that either T = U and y # U hence the derivation (9)

Uy K{Vi,....Vy }

Uy(Q3R3U) Hy(Q3R3U) Wy.(Q 3 R™ U)

y.(QFR=®U) Dy.(Q3R)3Uy.U 9y.Q3RAT

y.03%R3T  3y.Q3R3Uy.U y.0FR=7S
©) (10) (11)

Observe that Uy.K{ } is a n-ary killing context as required.

In many commutative cases, the bottommost rule does not interfere with the principal formula.
Consider when a rule is applied outside the scope of the principal formula. In this case, the
I UBC{W}

J 73
X USC{V} such that + Ix.U ® C{ W }. By the
induction hypothesis, there exist formulae P; and terms ¢;, for 1 < i < n such that r U{ti/x} 3 P;,
K{Pi1,....,P
K{Pi,...,P,} P P}
W . Hence C{ w }
c{v}

bottommost rule in a proof is of the form

for 1 < i < n, and n-ary killing context K{ } such that

as required.
IAx.C{U} 3 W
IxC{T}>»W
By the induction hypothesis, there exist formulae P; and terms t; where + C{ U }{ti/x} % P;, for
7({ Pl, ..

w

Consider the following application of any rule such that + 3x.C{U } » W.

1 < i £ n, and n-ary Kkilling context K{ } such that =+ P } . Hence, by Lemma 4.1, the

o

proof C{U H"/x} 3 Pi holds.
C{T HY/x}? P

All cases have been considered hence the lemma holds by induction on the size of a proof. 0O
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LEMMA A.6 (LEMMA 5.1). If+ C{ T }, then there exist formulae U; and substitutions o;, for1 < i < n,

and n-ary killing context K{ } such thatv+ To; ¥ U;; and, for any formula V there exist W; such that
K{w, Wy, ..., W,

either W; = Vo; 3 U; or W; = o and the following holds: (Wi, W, !
C{v}
Proof. The proof proceeds by induction on the size of the formula part of the context (n.b. not
counting the size of atoms). The base case concerning one hole is immediate.

Consider the case for a context of the form Ix.C{ } % P, where + 3x.C{ T } ¥ P. By Lemma 4.20,
there exist formulae Q; and values v; such that - C{ T }{“/,} # Q;, for 1 < i < n; and n-ary killing
context K{ } such that the following derivation holds.

K{Q1,Q2. .. On }
P

For context C{ } and any formula U, let C'{ } and ; be such that C{ U }{%//} = C'{ Uo; }. Notice
that for first-order quantifiers, the substitutions does not increase the size of the formula part of the
context. It can only increases the size of terms in atoms, which are not counted in this induction.
Since - C{ T }{%/,} ®Q; holds, then + C*{ To; } % Q; holds. Therefore, by the induction hypothesis,
there exists formula Vji such that either Vji =oor Vji = Uag;) cr} 3 Wji , where + (To;) 0'; 3 Wji, for
1 < j < my; and m;-ary killing context K{ } such that C{ U }{%/,} 3 Q; = C'{ Uo; } ® Q; and
the following derivation holds:

KLV LV}
C{Ua; } ®Q;

Hence the following derivation can be constructed for all formulae U.

W{Wi{‘/jiilﬁjﬁmi}tlﬁiﬁn>
K{C{UH{"A}PQi:1<i<n}
K{Ix.C{U}BQ;:1<i<n}
x.C{U}BK{Q;:1<i<n}
Fx.C{U}xK{O1,...,0n}
Ix.C{U}=P

Observe Vji =oor V}i = U(oi . 0]?) 73 W]l such that F T(oi . crj?) 23 W]’ for all i and j, as required.
Consider the case for a context of the form Ux.C{ } ® P, where  Ux.C{ T } # P. By Lemma 4.19,
there exist formulae Q and Q such that - C{ T } # Q and either Q = O or Q and 9x.Q, and also %

Therefore, by the induction hypothesis, there exist formulae V; and W; and substitutions o; such
that either V; = e or V; = Uo; ® W;, where + To; 3 W;, for 1 < i < n; and n-ary killing context K{ }
such that

K{Vi, Vo, ...,V } .

c{u}i=g

Hence the following derivation
Ux.K{V;:1<i<n}

Hx.(C{U}??Q)
Nx.C{U}#®Q
Ux.C{U}=®P

can be constructed for all formulae U, as required.
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Consider the case for a context of the form 9x.C{ } %P, where + 9x.C{ T } ® P. By Lemma 4.19,
there exist formulae Q and R such that x # Q and + C{ T } ® R and either Q = R or Q = Ux.R, and
Q

also =. Therefore, by the induction hypothesis, there exist formulae V; and W; and substitutions o;
such that either V; = cor V; = Uog; ® W;, where  Tao; 3 W;, for 1 < i < n; and n-ary killing context
K{ } such that
K{V,Va,...,V, } ‘
C{U}=®R
In the former case that Q = R, since x # Q, the derivation
Ux.(C{U }®R)
Ux.C{U } ®R
9x.C{U}*R

holds. In the case, Q = Ux.R the derivation

Ux.(C{U } 3 R)
I9x.C{U } 2 Ux.R

holds. Hence, for all formulae U,
Ux.K{V1,Vo,....,V;, }
Ux.(C{U } 3 R)
Ix.C{U }=»Q
Ix.C{U }=»P
Consider the case of a context of the form Vx.C{ }®P, where+ Vx.C{ T } ® holds. By Lemma 4.2,
for any variable y, + C{ T }{Y/x} ¥ P holds. For name y, let CY{ } be such that for any formula
U,C{U Y} = CY{ U{Y4} }. For any y, by the induction hypothesis, for any formula U, there
exist formulae Vl.y such that either Viy =oor Viy = U{y/x}aiy 3 Wiy, where + T{y/x}aiy 7 W'l.y holds,
for 1 < i < n; and n-ary killing context KY{ } such that C{ U }{¥/x} 3P = CY{ U{Yx} } ® P and
the following derivation can be constructed:
Ky{vl:1<i<n}
CH{U(h} 7P
Therefore, for y # (Vx.C{ U } ® P) and any U, derivation
Vy.?(y{ vii1<ic< n}
Vy.(C{U %} 3 P)
Vx.C{U }=®P
holds. In the above Vl.y = oor Vl.y = U{y/x}aiy 3 Vl/l.y, where + T{y/x}oiy 73 Wiy holds, for all i, as
required.
The cases for plus, with, tensor and seq do not differ significantly from MAV [23]. u]

LEMMA A.7 (CO-LEFT AND CO-RIGHT: LEMMA 5.7). If+ C{ P & Q } holds then both+ C{ P } and
FC{Q} hold

Proof. Assume that + (P & Q)o % R holds. By Lemma 4.19, - Po ® R and + Qo % R hold. Hence by
Lemma 5.2, for any context C{ },if+ C{P&Q } then+ C{P }and+ C{Q }. u]

LEMMA A.8 (CO-EXTERNAL: LEMMA 5.8). If+ C{ P ®(Q ® R) } holds then+ C{(P® Q) e (P®R) }
holds.
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Proof. Assume that + ((P @ Q) ® R)o ® W holds, for some substitution ¢. By Lemma 4.19, there
exist formulae T; and U; such that - (P @ Q)o # T; and + Ro % Uj, for 1 < i < n, and killing context
HK{ } such that
K{T1»U,..., T, U, }
W .

Now, by Lemma 4.21, for every i, there exists killing context K*{ } and types Vji such that either
FPo® Vji ork Qo 3 Vji holds, for 1 < j < m;, and the derivation
KL VLV LV}
T;

holds.
Notice that if + Po % Vji holds then the following derivation can be constructed.

o

(PO’ 3 Vj’) ® (Ro ® U;)

(P®R)O'7?Vji7?Ui
(PeR) &(QoR)o Vi AT,

Otherwise + Q ¥ Vji holds, hence the following derivation can be constructed.

o

(00 7 V}) & (Ro 5 U)

(QeR)o 3V 3
((P®R)®(Q®R))a??VJ.”??Ui

Hence by applying one of the above proofs for each i and j we can construct the following proof.

o

W{Wi{O:ISjSmi}:lsiSn}

x| K| (PeR o (QoR)o 3V 3T 1<j<m | 1<isn

((P®R)@(Q®R))a7?7({7(i{V;."??Ui:lstm,-}:1$i$n

|
7({((P®R)@(Q®R))a7?7<i{1/ji7?Ui:1§j§mi}:1SiSn}
|
}

(PeR)e(QeR)ox K{ K { V., V], .. .Vi }3U;:1<i<n
(PeR)e(QeR)o3K{T13Uy,...,T, 3U, }
(PeR)e(QeR)o3W

Hence + ((P ® R) @ (Q ® R))® W. Therefore, by Lemma 5.2, for any context - C{ (P ® Q) ® R } yields
FC{(PeR)e(Q®R)},asrequired. u]

LEMMA A.9 (CO-SEQUENCE: LEMMA 5.9). If+ C{ (P <Q) ® (R<S) } holdsthen+ C{(PeR)<(Q®S) }
holds.

Proof. Assume that+ ((P < Q) ® (R <S))o ® U holds, for some substitution ¢. By Lemma 4.19, there
exist n-ary killing context K{ } and U and U}, for 1 < i < n, such that - (P <Q)c 3 U? and
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F (R<S)o ® U} and the derivation

x{ut=ul,uy=Uy,... }

1°72

U

holds.
Hence by Lemma 4.19, for k € {0, 1} there exists m*-ary killing context K*{ } and types VX

Wl.kj for 1 < j < m¥, such that + Po & Vl.oj and + Qo % Wl.oj and+ Ro % Vl.lj and + So 3 Wilj and the
following derivation

KELVE < Wi W

i,1°

Uk

1

holds.

Hence we can construct the following proof.

‘K{ (Kll{ (K?{ °o:1<j<m

0
sk EEZZ?;ZQ;E;(fsgt;)g)

&P®Rywww1mvl)<
ﬁQ®$owwomwl)

7({7(11{7@{ ((((Pl/?jljr?;/;kg)i?)v)\;j?ﬂ/\/fk)) :1Sj£m?}:1§k£m}}:1§i£n}
<

sl 701 (vl < (W) 1|
1<k<m

Ky K!

i i

(PeR)+(QeS)orK|

1<i<n
%! 7@{ (Vi(,)j<vvi?j)7?(vzlk Wzlk)ilﬁjs’"? }
(PeR)<(QeS))o 3K ! :1<k<m!
:1<i<n
gl H{ v sy < | (vl W)
(PeR)<(Q®S)oxK ! 1<k <ml
:1<i<n
WO 1< 0
i Vl] Vvl] —Jsmi}

(PeR)<(QeS))o 3K :
7(11 Vl.lkﬂ/\/ilk:lﬁkﬁm}}

(PeR)<(QeS)onK{U5ULU3U,,. ..}
(PeR)<(QeS)o U

Therefore, by Lemma 5.2, for any context - C{ (P <Q) ® (R<S) } yields + C{(P®R)<(Q ®S) }.O

LEMMA A.10 (co-TIDY: LEMMA 5.10). If+ C{ o @®o } holds, then+ C{ > } holds.
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Proof. Assume that + (o @ o) ® P holds. By Lemma 4.21, there exist killing context K{ } and
formulae U; for 1 < i < nsuch that + o % U; or + o % U; hold, hence + U; holds, and the following
derivation can be constructed.

K{U,...,U,} .
P
Thereby the following proof can be constructed:

o

K{oo,... }
KU Un) |
P
Therefore, by Lemma 5.2, for any context + C{ o ® o } yields  C{ o }, as required. u]

LEMMA A.11 (ATOMIC CO-INTERACTION: LEMMA 5.11). If+ C{ a ® a } holds then+ C{ o } holds.

Proof. Assume for atom « that + (e ® @) o % P, for some formula P and some substitution ¢. By
Lemma 4.19, there exist n-ary killing context K{ } and formulae U; and V; such that + ¢o % U; and
koo ® V;, for 1 <i < n,such that
K{U 3V, Uy BV, ...}
P
By Lemma 4.22, for every i, there exist m}-ary killing contexts K?{ } such that
‘K?{ ao,...,qa0 }
U; ’
By Lemma 4.22, for every i, there exist m}-ary killing contexts K}{ } such that
K{ao,... a0}
7 .

Thereby the following proof can be constructed.

K{K{ K e:1<j<md}i1<k<ml}:1<i<n}
K{K{ K {acsac:1<j<md}:1<k<ml}:1<i<n}
K{x{x{ac:1<j<ml}vac:1<k<ml}:1<i<n}
K{xac:1<j<m} 3K {ac:1<k<ml}:1<i<n}

K{U 3V, Uz 3 Vy,... }
P

Therefore, by Lemma 5.2, for any context C{ },+ C{ a ® @ } yields that + C{ - }, as required. O
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