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Abstract

For a word w in an alphabet Γ, the alternation word digraph
Alt(w), a certain directed acyclic graph associated with w, is pre-
sented as a means to analyze the free spectrum of the Perkins monoid
B1

2. Let (fB1
2

n ) denote the free spectrum of B1
2, let an be the num-

ber of distinct alternation word digraphs on words whose alphabet is
contained in {x1, . . . , xn}, and let pn denote the number of distinct
labeled posets on {1, . . . , n}.

The word problem for the Perkins semigroup B1
2 is solved here in

terms of alternation word digraphs: Roughly speaking, two words u
and v are equivalent over B1

2 if and only if certain alternation graphs
associated with u and v are equal. This solution provides the main
application, the bounds: pn ≤ an ≤ f

B1
2

n ≤ 2na2
2n. A result of the

second author in a companion paper states that (log an) ∈ O(n3),
from which it follows that (log f

B1
2

n ) ∈ O(n3) as well.
Alternation word digraphs are of independent interest combinato-

rially. It is shown here that the computational complexity problem
that has as instance {u, v} where u, v are words of finite length, and
question “Is Alt(u) = Alt(v)?”, is co-NP-complete. Additionally, al-
ternation word digraphs are acyclic, and certain of them are natural
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extensions of posets; each realizer of a finite poset determines an ex-
tension by an alternation word digraph.

1 Introduction

Let w be a word in an alphabet Γ. The alternation word digraph of w, denoted
Alt(w), is a directed acyclic graph that encodes an aspect of the symmetry of the word w.
Alternation word digraphs were defined by the second author in order to better understand
the free spectrum of the Perkins semigroup B1

2. Definitions of alternation word digraphs,
free spectra, and word problems will be given in Section 1.1 and 1.2.

Let f
B1

2
n be the cardinality of the n-generated B1

2-free semigroup. The sequence (fB1
2

n )
is the free spectrum of B1

2. Let an be the number of distinct alternation word digraphs
on words whose alphabet is contained in {x1, . . . , xn}, and let pn be the number of dis-
tinct labeled partially ordered sets on an n-element set. A main result of this paper,
Theorem 1.8, is a solution to the word problem for B1

2 via alternation word digraphs.
Theorem 1.11, which follows from Theorem 1.8 and its proof, connects pn, an and f

B1
2

n

via the following bounds: pn ≤ an ≤ f
B1

2
n ≤ 2na2

2n. In [15], the second author has proven
that (log an) ∈ O(n3), from which it follows directly (using that O(log pn) = O(n2)) that
(log f

B1
2

n ) ∈ O(n3), a result of some importance in the classification of free spectra of finite
monoids and universal algebras.

As the reader might have already surmised, the foremost goal of this paper is to
present alternation word digraphs as a tool to analyze the free spectrum of B1

2. But a
second important goal is to make it evident that the alternation word digraph is a complex
and rich structure. To this end, we show that given two finite words u and v, recognizing
whether Alt(u) = Alt(w) is co-NP-complete; the proof uses Theorem 1.8 here and an
algebra-complexity result, Theorem 3.1 from [14]. More surprisingly, it is shown here that
the question “Given a word w, does Alt(w) have an edge?” is NP-complete, a result that
follows from Theorem 1.8 and an algebra-complexity result of O. Klima [9].

In Section 1.1, we provide the definition of alternation word digraphs and briefly
describe a connection between posets and alternation word digraphs. In Section 1.2, we
provide background on B1

2 and the statements of the main results of this paper. In Section
2, we prove Theorem 1.8 and also provide a solution to the word problem for B1

2 as an
inverse semigroup. In Section 3, we prove Theorem 1.10, a theorem with five computational
complexity results. In the Conclusion, Section 4, are open problems.

We assume familiarity with basic graph theory, posets, and computational complexity.
Posets are assumed to be strict (that is, non-reflexive) and thus can be regarded as loopless
acyclic transitive directed graphs. Section 3 uses results from [14] and [9] concerning
certain subproblems of the term-equivalence problem for B1

2; otherwise the paper is self-
contained.
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1.1 Alternation word digraphs

For a finite word w in the alphabet {x1, x2, . . .}, we define Alt(w), the alternation word
digraph of w. Alternation word digraphs arise as a natural tool in the study of B1

2 (see
Section 2.1); they were implicit in [14] but, to our knowledge, are defined here for the
first time. Unless otherwise stated, “word” will refer to a finite word in the alphabet
{x1, x2, . . .}.

Definition 1.1 Let w be a word.

1. Let V ar(w) denote the variables occurring in w.

2. For a word w, let |w| denote the number of variables, including multiplicities, oc-
curring in w.

3. If w = a1 . . . ak where a1, . . . , ak ∈ {x1, x2, . . .}, and if i and j are positive integers
such that 1 ≤ i ≤ j ≤ k, then the word aiai+1 . . . aj is said to be a divisor of w.

4. If y is obtained by striking out (possibly no) symbols from a word w, then y is said
to be a subword of w.

5. For X ⊆ V ar(w), let wX denote the word that results by eliminating from w all
occurrences of variables not in X.

6. Let w = xi1 . . . xik
be a word. For c ≤ k, let w(c) = xic . We say that xic occurs in

the c-th position of w.

7. For a word w with |w| = k, we say that w(1) is the left-most variable of w and
w(k) is the right-most variable of w.

8. Let wr denote the “reverse” of w.

9. Let V1(w) be the subset of V ar(w) consisting of variables that occur exactly one
time in w.

10. Let w be the word over the alphabet {x1, . . . , xn} ∪ {y1, . . . , yn} formed from w by
replacing each instance xi ∈ V ar(w) with xiyi.

For example, with w = x1x2x1x2x4x6, we have that V ar(w) = {x1, x2, x4, x6}, that
V1(w) = {x4, x6}, that x2x1 is a divisor of w, that x1x4x6 is not a divisor of w but is a
subword of w, that wX = x1x1x4x6 with X = {x1, x4, x6}, that wr = x6x4x2x1x2x1, and
that w = x1y1x2y2x1y1x2y2x4y4x6y6.

Definition 1.2 Let w be a word and let X and Y be disjoint non-empty subsets of V ar(w).
Then X and Y are alternating if for all length-two divisors xixj of wX∪Y , we have that
exactly one of {xi, xj} is in X.

Definition 1.3 Let w be a word. Alt(w), the alternation word digraph of w, has a vertex
set consisting of the non-empty proper subsets of V ar(w). For two disjoint non-empty
proper subsets X, Y ⊂ V ar(w), let X → Y be an edge of Alt(w) (written X → Y ∈
E(Alt(w))) if
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1. X and Y are alternating in w and

2. the left-most variable of wX∪Y is contained in X.

Observe that X and Y alternate in w if and only if X and Y alternate in wX∪Y ,
from which it follows that X → Y ∈ Alt(w) if and only if X → Y ∈ Alt(wX∪Y ). In
the example that follows, we use i in place of xi and suppress commas when there is no
chance of ambiguity. For example, the edge {x2, x4} → {x3} will be written 24 → 3. In
Example 1.1 below is a brief discussion of Alt(x1x2x3x1x4), whose graph is given in Figure
1.
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Figure 1: The digraph Alt(x1x2x3x1x4).

Example 1.1

Let u = x1x2x3x1x4. The graph Alt(u) has 24 − 2 = 14 vertices; the edges of Alt(u) are
{1 → 2, 1 → 3, 2 → 3, 2 → 4, 3 → 4, 1 → 24, 1 → 34, 24 → 3} (see Figure 1). For
example,

• 1 → 3 is an edge since in u{x1,x3} = x1x3x1 occurrences of {x1} and {x3} alternate
and the left-most variable of ux1,x3 is in {x1}.

• 1 → 34 is an edge of Alt(u) because in u{x1,x3,x4} occurrences of {x1} alternate
with occurrences of {x3, x4} and the left-most variable of u{x1,x3,x4} is in {x1}.

• 24 → 3 is an edge because in u{x2,x3,x4} occurrences of {x2, x4} alternate with those
of {x3} and the left-most variable of u{x2,x3,x4} is contained in {x2, x4}.

• 13 → 24 is not an edge because x3x1 is a divisor of u{x1,x2,x3,x4} = u.

Though they will play no essential role in the paper, we consider acyclicity and tran-
sitivity of alternation word digraphs. In general, they are not transitive, as we show in
Example 1.2. A directed acyclic graph (a DAG) is a directed graph with no directed cycles;
alternation word digraphs are DAGs, as we show next. For a word w and a non-empty
subset X ⊆ V ar(w), let nw(X) be the position in w of the left-most variable contained in
X.

Lemma 1.4 Let w be a word. Then Alt(w) is a DAG.
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Proof. If A1 → A2, A2 → A3, . . . , Ak−1 → Ak are edges of Alt(w), then nw(A1) <
nw(A2) < · · · < nw(Ak−1) < nw(Ak), from which it follows that Ak → A1 6∈ E(Alt(w)).
¤

Example 1.2 With t = x1x2x3x1x2x1, we have 1 → 2 and 2 → 3 are both in E(Alt(t)),
but 1 → 3 is not. Also, with u = x1x2x3x1x4, an inspection of the graph of Alt(u) in
Figure 1 shows that 24 → 3 and 3 → 4 are in Alt(u), but 24 → 4 is not an edge.

In Section 1.1.1, we provide some bounds involving the definitions below.

Definition 1.5 1. For a positive integer n, let Alt(n) = {Alt(w) : V ar(w) = {x1, . . . , xn}}.
2. Let an be the number of labeled alternation word digraphs on words with alpha-

bet contained (properly or otherwise) in {x1, . . . , xn} (or any other fixed n-letter
alphabet).

3. Let pn be the number of labeled posets on an n-element set.

4. For a word w and a vertex U ⊂ V ar(w), let |U | be the order of U .

5. For a word w and a positive integer k, let Alt≤k(w) be the graph induced by Alt(w)
on the set of vertices of order less than or equal to k.

6. Let Alt1(w) be the graph induced by Alt(w) on the vertices of order 1.

With u = x1x2x3x1x4 in Example 1.1 above, we have Alt1(u) has four vertices and
edges {1 → 2, 1 → 3, 2 → 3, 2 → 4, 3 → 4}.

1.1.1 Connection between posets and alternation word digraphs

Every finite strict poset can be extended to an alternation word digraph; in fact, each
realizer of a finite poset 〈X; P 〉 determines an alternation word digraph Alt(w) in which
〈X; P 〉 (as a directed acyclic graph) is Alt1(w).

Let P = 〈{1, . . . , n}, P 〉 be a finite poset with a realizer R = {L1, . . . , Lk}. For
i = 1, . . . , k, we have Li is a total-ordering σi(1) > . . . > σi(n), where σi is a permutation
of {1, . . . , n}. Let wR = σ1(1) . . . σ1(n) . . . σk(1) . . . σk(n), a word of length kn in the
alphabet {1, . . . , n}. With a moment’s thought, it will be clear that for i 6= j ∈ {1, . . . , n},
we have iP j if and only if i and j alternate in wR, and the left-most occurrence of i
precedes the left-most occurrence of j in wR. That is, iP j if and only if i → j ∈ Alt(wR).
We have proved the following.

Proposition 1.6 If 〈X; P 〉 is a finite labeled poset, then there exists a finite word w with
V ar(w) = X such that Alt1(w) = 〈X; P 〉.

Example 1.3 For example, with X = {1, 2, 3, 4} and relation P such that 〈X; P 〉 is the
connected labeled poset with unique maximal element 1, and with {2, 3, 4} forming an an-
tichain, with realizers R = {[1, 2, 3, 4], [1, 4, 3, 2]} and S = {[1, 2, 3, 4], [1, 3, 4, 2], [1, 2, 4, 3]},
we have 〈X; P 〉 = Alt1(wR) = Alt1(wS). Notice that 13 → 24 ∈ Alt(wR) but that in
Alt(wS) all vertices of order greater than one are isolated.
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We have defined pn as the number of distinct labeled posets on an n-element set. It
is well-known (and not difficult to show) that O(log pn)) = O(n2).

Corollary 1.7 For n ∈ N, we have the following:

1. pn ≤ an

2. n2 ∈ O(log an)

1.2 B1
2 background

Recall that a semigroup S = 〈S; ∗〉 is a set S equipped with an associative binary operation
∗. For a, b ∈ S, we write “ab” rather than “a∗b”. A monoid is a semigroup with an identity
element 1, satisfying 1a = a = a1. B2 consists of five two-by-two matrices: the two-by-

two 0-matrix (referred to as “0”), a =
(

0 0
1 0

)
, a′ =

(
0 1
0 0

)
, aa′ =

(
0 0
0 1

)
, and

a′a =
(

1 0
0 0

)
. B2 is a semigroup (but not a monoid) under the operation matrix

multiplication. The six-element monoid B1
2, the Perkins semigroup, is formed by adding

the two-by-two identity matrix (referred to as “1”) to B2. Let w = xi1 . . . xij be a word

and let K be a set of variables containing V ar(w). An evaluation e : K → B1
2 is an

assignment xi → si ∈ B1
2 (for all xi ∈ K). Let e(w) = e(xi1) · · · e(xij ), the evaluation of w

under e. For example, with w = x2x1x2 and the evaluation e : V ar(w) = {x1, x2} → B1
2

given e(x1) = a and e(x2) = a′, we have e(w) = a′aa′ = a′. In like manner, evaluations
can be defined for any semigroup S. If u and v are words such that for all evaluations
e : V ar(u) ∪ V ar(v) → S, we have e(u) = e(v), then u and v are said to be S-equivalent
(denoted u ≈S v) and u ≈S v is said to be an identity of S. For example, a semigroup S is
commutative if and only if x1x2 ≈S x2x1. It is not difficult to verify that x2

1x
2
2 ≈B1

2
x2

2x
2
1

and that x3
1 ≈B1

2
x2

1, two B1
2 identities that play a role in this paper. The importance of

the monoid B1
2 was established when, in 1969, P. Perkins [12] proved that there exists no

finite set Γ of B1
2-identities such that all identities of B1

2 can be derived from Γ. That is,
B1

2 does not have a finite basis for its identities. Later work further established the central
role of B1

2 in algebraic theory. We will not pursue finite basis properties in this paper as
we continue our discussion of B1

2 as a small monoid with complex structure.

The word problem for a semigroup S: For a given finite semigroup S, given words
u and v, is u ≈S v? The word problem for a finite semigroup S is decidable. Here is the
statement of a main theorem of the paper, a solution to the word problem of B1

2. See
Definition 1.1.10 for u, v etc.

Theorem 1.8 Let u and v be words. Then u ≈B1
2

v over B1
2 if and only if

1. V1(u) = V1(v),

2. Alt(u) = Alt(v), and

3. Alt(ur) = Alt(vr).
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The term-equivalence problem for a semigroup S, TERM-EQ(S): An instance
consists of two finite words, u and v, having size |u|+|v|, with question, “Is u ≈S v?”.1 The
term-equivalence problem for a finite semigroup is in co-NP, as is not difficult to check. It
can be quite difficult to determine the computational complexity of the term-equivalence
problem for a given finite semigroup. See [2], [7], [9], [4], [17], [14], [19], [20], [21]. For
example, while it is known (and non-trivial) that TERM-EQ(G) is co-NP-complete when
G is a non-solvable group ([4]), a particularly interesting open problem is to determine if
all finite solvable groups have tractable term-equivalence problems.

TERM-EQ(B2) is in P , as is evident from any of the algorithms provided in [13], [10],
[17]2. So it was somewhat surprising that TERM-EQ(B1

2) is co-NP-complete, a result
proved independently by the second author in [14] and in [9]. In this paper, we use the
quite different approaches used in the proofs in [14], [9] to prove a number of hardness
results involving alternation word digraphs.

Definition 1.9 1. For a fixed positive integer k, let ALT-EQ≤k have as an instance
a pair of words {u, v}, with question, “Is Alt≤k(u) equal to Alt≤k(v)?”.

2. ALT-EQ has as an instance a pair of words {u, v}, with size |u|+ |v|, and asks, “Is
Alt(u) equal to Alt(v)?”.

3. Let w be a word and let U → V ∈ E(Alt(w)). Then the support of U → V is
U ∪ V .

SUPPORT has as an instance a word w and a variable xi ∈ V ar(w), with size |w|,
and asks, “Is xi contained in the support of some edge of Alt(w)?”.

4. E–ALT = ∅ has an instance a word w with size |w| and asks, “Is the edge set of
Alt(w) empty?”.

5. Because x2
1x

2
2 ≈B1

2
x2

2x
2
1 and x3

1 ≈B1
2

x2
1, it follows for a word w satisfying V ar(w) ⊆

{x1, . . . , xn}, we have that wx2
1 . . . x2

n ≈B1
2

x2
1 . . . x2

n ≈ x2
1 . . . x2

nw. That is, x2
1 . . . x2

n

is, a “zero”, in a sense discussed below in the third footnote.

Let FREE–0 have as an instance (w, n), where w is a word and n ∈ N, with size
|w|, with question, “Is w ≈B1

2
x2

1 . . . x2
n?”.

Theorem 1.10 1. For a fixed positive integer k, ALT-EQ≤k is in P.

2. ALT-EQ is co-NP-complete.

3. SUPPORT is NP-complete.

4. E(ALT)= ∅ is co-NP-complete.

5. FREE–0 is co-NP-complete.

1The term-equivalence problem is also referred to as the identity-checking problem.
2In [13], [10], B2 is treated as an inverse semigroup; in Section 2.3 we provide an

alternation word digraph solution to the word problem of B1
2 as an inverse semigroup.
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At the end of the paper, motivated by Theorem 1.10,5, we propose a conjecture that
would classify all term-equivalence problems for the pseudovariety of aperiodic monoids
with commuting idempotents (of which B1

2 is one).

1.2.1 Free spectra

As mentioned, in this paper we provide an application to free spectra of monoids. Let
M be a finite monoid, and let w be a finite word such that V ar(w) ⊆ {x1, . . . , xn}.
Then w determines an n-ary function wM : Mn → M where for (a1, . . . , an) ∈ Mn,
we let wM(a1, . . . , an) = e(w) where e : {x1, . . . , xn} → M is the evaluation such that
e(xi) = ai, for i = 1, . . . , n. (If i ≤ n and xi 6∈ V ar(w), then xi is an inessential variable
in the function wM.) Observe that u ≈M v if and only if uM = vM. Let Fn(M) =
{wM : V ar(w) ⊆ {x1, . . . , xn}}.3

Let fM
n be the cardinality of Fn(M), and let (fM

n ) denote the free spectrum of M.
For example, with G a finite Abelian group of exponent k, it is not difficult to verify
that fG

n = kn, and with U2 the two-element semilattice, we have fU2
n = 2n − 1. If N is

contained in the pseudovariety4 generated by a monoid M then for all n ∈ N, we have
fN

n ≤ fM
n . If M is a finite non-trivial monoid, then it has either a non-trivial group

homomorphic image or a non-trivial semilattice homomorphic image; thus, fM
n ≥ 2n − 1.

For this reason, free spectra of a finite monoid M are typically analyzed up to O(log fM
n ).

Note that fM
n ≤ |M ||M |n . A free spectrum is said to be log-exponential (or, doubly

exponential) if there exists a finite real number c such that for all n high enough fM
n ≥ 22cn

;
otherwise, M is said to be sub-log-exponential. Well-known works of G. Higman [3] and
A. Neumann [11] state that a finite group G is sub-log-exponential if and only if it is
nilpotent; morever, G has nilpotency index k ∈ N if and only if O(log fG

n ) = O(nk), an
extraordinary result correlating properties of finite algebras and their free spectra.

Much remains to be understood about free spectra of finite monoids. There is a
growing literature on the asymptotic growth of sub-log-exponential free spectra of finite
monoids, stimulated by a result of K. Kearnes [6] that associated, in a non-trivial way,
to each finite algebra A a finite monoid Tw(A), the twin monoid of A in such a way
that properties of the free spectrum of Tw(A) are transferred to the free spectrum of
A. For example, if Tw(A) has a log-exponential free spectrum, then so does A, and
for k a positive integer, if nk ∈ O(log f

Tw(A)
n ), then nk ∈ O(log fA

n ). In [6] Kearnes
asks for a classification of the growth of free spectra of finite monoids. In notes from
the workshop A Course in Tame Congruence Theory [5], held in Budapest, July

3For a fixed n, the set of all functions Fn(M) = {wM : V ar(w) ⊆ {x1, . . . , xn}} forms
a semigroup under point-wise multiplication, one that is isomorphic to the n-generated
relatively free monoid in the variety generated by M, this last fact one that we will not
use in this paper. Observe that x2

1 . . . x2
n is the zero of the semigroup Fn(B1

2).
4The pseudovariety generated by M consists of all monoids in HSPfin(M), the small-

est class of algebras containing M and closed under taking of finite direct products, sub-
monoids, and homomorphic images. If N is in the pseudovariety generated by M, then,
since identities are “preserved” by homomorphic images, products and submonoids, every
identity of M is satisfied by N. Hence, as stated above, fN

n ≤ fM
n .
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2–13, 2001, it was asked (slightly paraphrased here) whether it was true or false that for
a finite monoid M with sub-log-exponential free spectrum, either O(log fM

n )= O(p(n)),
where p(n) is a polynomial, or O(log fM

n ) = O(n log n). In [18], it was shown that the
answer to the above question is “no”: for each k ∈ N, there exists a finite monoid M such
that O(log fM

n ) = O(nk log n). To date there has been no complete classification of the
asymptotic classes of (log fM

n ), where (fM
n ) is sub-log-exponential. Nor has there been a

description of finite monoids with sub-log-exponential free spectra.5

The free spectrum problem for a finite monoid M: Is the free spectrum of M
sub-log-exponential? If so, determine O(log fM

n ).

B1
2’s history might lead one to expect difficulty with the free spectrum problem for

B1
2. As mentioned, the principal application is a set of bounds that link the free spectrum

of B1
2 and the sequence (an). Note that by Theorem 1.8, the mapping {w : V ar(w) ⊆

{x1, . . . , xn}} into (2{x1,...,xn}, Alt(2n), Alt(2n)), given by w → (V1(w), Alt(w), Alt(wr),
separates all pairs of B1

2–inequivalent words. Thus f
B1

2
n ≤ 2na2

2n. That pn ≤ an was
proven in Section 1.1.1, and that an ≤ f

B1
2

n is proven in Section 2.1.

Theorem 1.11 For all n ∈ N, we have pn ≤ an ≤ f
B1

2
n ≤ 2na2

2n.

Theorem 1.11 is used in the companion paper [14], where a more extensive analysis
of alternation word digraphs leads to certain bounds on (an) and provides the answer to
the first question above–(fB1

2
n ) is indeed sub-log-exponential–and limits O(log f

B1
2

n ) to a
quite small range, as some interval of functions in [n2, n3]. The precise determination of
O(log f

B1
2

n ) remains an important open problem.

2 Word problems for B1
2

In Sections 2.1 and 2.2, Theorem 1.8 is proven. In Section 2.3, alternation word digraphs
for inverse semigroup words are defined, and a solution to the word problem for B1

2, as
an inverse semigroup, is given in terms of alternation word digraphs for inverse semigroup
words.

2.1 Alt(u) 6= Alt(v) implies u 6≈B1
2
v

Proposition 2.1 below links alternation word digraphs with the word problem for B1
2. Let

S be a semigroup. An element e ∈ S is said to be idempotent if e2 = e; an element
s ∈ S is said to be nil if there exists a positive integer k such that sk = 0. Note that

5In [15] the second author conjectured that a finite monoid M is sub-log-exponential if
and only if it is in EDA∩Gnil, monoids with nilpotent subgroups and whose idempotents
generate a monoid all of whose regular elements are idempotent. ( a ∈ M is regular if
there exists an element b ∈ M such that aba = a and bab = b; all idempotent are regular.)
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{0, 1, aa′, a′a} is the subset of idempotents of B1
2 and that a and a′ are both nil. For the

remainder of the paper, for words u and v, we write “u ≈ v” rather than “u ≈B1
2

v”.
Suppose that u, v are words and xi ∈ V ar(u)\V ar(v). Let e : V ar(u)∪V ar(v) → B1

2

be as follows: e(xi) = 0 and for all xj ∈ V ar(u) ∪ V ar(v) − {xi}, let e(xj) = 1. Then
e(u) = 0 but e(v) = 1; therefore, u 6≈ v. Unless otherwise stated, we will assume that
V ar(u) = V ar(v) = {x1, . . . , xn}. The next proposition led to the definition of alternation
word digraphs.

Proposition 2.1 Let u, v be words with V ar(u) = V ar(v). Then Alt(u) 6= Alt(v) implies
u 6≈ v.

Proof. Suppose that U and V are disjoint proper non-empty subsets of V ar(u) = V ar(v),
that U → V ∈ E(Alt(u)), and that U → V 6∈ E(Alt(v)). Consider the evaluation
e : V ar(u) ∪ V ar(v) → {a, a′, 1} ⊂ B1

2 such that e(xi) = a if xi ∈ U , e(xi) = a′ if xi ∈ V ,
and e(xi) = 1 if xi 6∈ U ∪ V . Because instances of U and V alternate in u and the left-
most variable of uU∪V is in U , it follows that for some positive integer k, we have either
e(u) = (aa′)k or e(u) = (aa′)ka (depending on whether the right-most variable in uU∪V is
in U or is in V ).

By assumption, U → V 6∈ E(Alt(v)). If V → U ∈ E(Alt(v)), then with the evaluation
e above, we have for some positive integer k that e(v) = (a′a)k or e(v) = (a′a)ka′. Observe
that aa′a = a and a′aa′ = a′; thus, {aa′, aa′a} ∩ {a′a, a′aa′} = ∅. Thus e(u) 6= e(v) and
u 6≈ v for this case. If neither U → V nor V → U is in E(Alt(v)), then U and V do
not alternate in v, and there are consecutive occurrences of U -variables or consecutive
occurrences of V -variables in vU∪V . In particular, with the evaluation e as above, that
a2 = 0 = (a′)2 implies that e(v) = 0. Now 0 6∈ {a, a′, aa′, a′a} implies that e(u) 6= e(v),
completing the proof. ¤

Corollary 2.2 For all n ∈ N, we have an ≤ f
B1

2
n .

Example 2.1 In general, even Alt(u) = Alt(v) and Alt(ur) = Alt(vr) do not imply
that u ≈B1

2
v. Consider w = x1x2x3x4x5x4x5x3x1x2 and v = wx1x3x2x4x5. As can

be verified, E(Alt(w)) = {1 → 2, 4 → 5, 14 → 25} = E(Alt(v)) and E(Alt(wr)) =
{2 → 1, 5 → 4, 25 → 14} = E(Alt(vr)). Let e : V ar(u) = V ar(v) → B1

2 be defined as
follows: e(x1) = e(x4) = a, e(x2) = e(x5) = a′, and e(x3) = aa′. Now e(v) = 0 but
e(w) = aa′ 6= 0.

2.2 Completion of proof of Theorem 1.8

We begin the proof by considering evaluations of words into the set {1, a, a′} ⊂ B1
2 .

Definition 2.3 Let u and v be words.

1. Let N = {1, a, a′} ⊆ B1
2 .

2. If for every evaluation e with range in N we have e(u) = e(v), then u is N-
equivalent to v, denoted u ≈N v.
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A quick reading of the proof of Proposition 2.1 reveals that for words u and v such
that V ar(u) = V ar(v), we have if Alt(u) 6= Alt(v) or Alt(ur) 6= Alt(vr) then u 6≈N v.

Suppose xi ∈ V1(u) \ V1(v). Then for the evaluation e : V ar(u) → {1, a, a′} that
sends xi to e(xi) = a and the remaining variables in V ar(u) to 1, we have e(u) = a and
e(v) = 1. Thus V1(u) 6= V1(v) implies u 6≈N v. We have proven one direction of the
following proposition.

Proposition 2.4 Let u, v be words with V ar(u) = {x1, . . . , xn} = V ar(v). Then u ≈N v
if and only if

1. Alt(u) = Alt(v);

2. Alt(ur) = Alt(vr); and

3. V1(u) = V1(v).

Proof. Let u, v be words with V ar(u) = {x1, . . . , xn} = V ar(v). To prove the
proposition, we need only prove that the three conditions above guarantee that u ≈N v.
Let e : V ar(u) → N be an evaluation with range in N . If e(V ar(u)) = {1}, then
e(u) = 1 = e(v). So we assume e(V ar(u)) ∩ {a, a′} 6= ∅.

Suppose there exists xi ∈ V ar(u) such that e(xi) ∈ {a, a′} and for all xj ∈ V ar(u) \
{xi}, we have e(xj) = 1. If xi ∈ V1(u) = V1(v), we have e(u) = e(xi) = e(v). If
xi 6∈ V1(u) = V1(v), we have e(u) = 0 = e(v).

Assume at least two variables are contained in e−1({a, a′}). With this assumption,
e(V ar(u)) ⊆ {1, a} or e(V ar(u)) ⊆ {1, a′} implies e(u) = 0 = e(v). So assume {a, a′} ⊆
e(V ar(u)). In that case, with U = e−1(a) and V = e−1(a′) (thus xi 6∈ U ∪ V implies
e(xi) = 1), we have one of the following:

• Neither U → V nor V → U is in Alt(u) = Alt(v). Then U and V do not alternate
in either u or v and e(u) = 0 = e(v); or

• U → V ∈ Alt(u) = Alt(v) or V → U ∈ Alt(u) = Alt(v). Without loss of generality,
assume U → V ∈ Alt(u) = Alt(v). Thus, U and V alternate in u and alternate in
v, from which it follows that U and V alternate in ur and alternate in vr. Hence
one of U → V or V → U is in Alt(ur) = Alt(vr). We have U → V ∈ Alt(ur) =
Alt(vr) implies e(u) = aa′a = a = e(v), and V → U ∈ Alt(ur) = Alt(vr) implies
e(u) = aa′ = e(v).

For all cases, e(u) = e(v). Since e was an arbitrary evaluation with range contained in N ,
we have u ≈N v. ¤

We complete the proof of Theorem 1.8.

Let u, v be words. For the remainder of the proof, we assume

• V ar(u) = V ar(v): otherwise, there exists an evaluation e : V ar(v) ∪ V ar(u) → B1
2

such that {e(u), e(v)} = {0, 1}.

11



• V1(u) = V1(v): otherwise, as the first paragraph of the proof of Proposition 2.4
shows, there exists an evaluation e : V ar(u)∪V ar(v) → B1

2 such that {e(u), e(v)} =
{0, a}.

• If e : V ar(u) = V ar(v) → B1
2 is an evaluation, then 0 6∈ e(V ar(u)): otherwise,

e(u) = e(v) = 0, which, if that is the case, is of no help in showing u 6≈ v.

Claim 1 For words u and v, we have u ≈ v if and only if u ≈ v.

Suppose u ≈ v. Let e : V ar(u) = V ar(v) → B1
2 be an evaluation. Define e : V ar(u) =

V ar(v) → B1
2 as follows: for xi ∈ V ar(u), let e(xi) = e(xi)e(yi). Note that e(u) = e(u)

and e(v) = e(v). Now u ≈ v implies e(u) = e(v), which in turn implies e(u) = e(v). Thus,
u ≈ v.

Conversely, assume u ≈ v. Let e : V ar(u) = V ar(v) → B1
2 be an evaluation and define

e : V ar(u) → B1
2 as follows: let e(xi) = e(xi) and let e(yi) = 1. Of course, e(u) = e(u)

and e(v) = e(v). This completes the proof of the claim.

By Claim 1 we have u ≈ v implies u ≈ v, which in turn implies u ≈N v, and which by
Proposition 2.4 gives us that Alt(u) = Alt(v) and Alt(ur) = Alt(vr).

For the converse, assume that Alt(u) = Alt(v) and Alt(ur) = Alt(vr). By Proposi-
tion 2.4 we have u ≈N v. Let e : V ar(u) → B1

2 be an evaluation. For each e(xi) 6∈ {1, a, a′},
there exists a uniquely determined ci, di ∈ {a, a′} such that cidi = e(xi). Construct
an evaluation e : V ar(u) → B1

2 , as follows: if e(xi) 6∈ {0, 1, a, a′}, let e(xi) = ci and
e(yi) = di, where ci, di are uniquely determined; if e(xi) ∈ {1, a, a′}, let e(xi) = e(xi) and
let e(yi) = 1. Observe that e is an evaluation with range in N . Also, V1(u) = V1(v) clearly
implies V1(u) = V1(v). By Proposition 2.4 we have u ≈N v, from which it follows that
e(u) = e(v). By construction, e(u) = e(u) and e(v) = e(v). Thus e(u) = e(v). It follows
that u ≈ v. This completes the proof of the theorem. ¤

2.3 Word problem for the inverse semigroup B1
2

A semigroup S equipped with a unary operation −1 such that xx−1x = x, x−1xx−1 = x−1,
and xx−1yy−1 = yy−1xx−1 for all x, y ∈ S is said to be an inverse semigroup. There is
an extensive literature on word problems for inverse semigroups, and it turns out that
a fairly obvious modification of alternation word digraphs for words over an alphabet
{x1, x2, . . .} ∪ {x−1

1 , x−1
2 , . . .} leads to our modest contribution to this area, a solution of

the word problem for B1
2, as an inverse semigroup, one that closely resembles Theorem 1.8.

Section 2.3 will not be referred to in Sections 3 and 4.

1. B2 is an inverse semigroup with an unary operation −1 defined as follows: a−1 = a′,
(a′)−1 = a, (aa′)−1 = a′a, (a′a)−1 = aa′, 0−1 = 0.

2. B1
2 is an inverse semigroup with 1−1 = 1 (and other inverses as in B2 above).

12



A finite word w in the alphabet {x1, x2, . . .} ∪ {x−1
1 , x−1

2 , . . .} is said to be an inverse
semigroup word. Let I be an inverse semigroup. Let e : {x1, . . . , xn} → I be a mapping.
The mapping e gives rise to an evaluation of w, denoted e(w), via the convention e(x−1

i ) =
e(xi)−1. Two inverse semigroup words u, v are I-equivalent (denoted u ≈I v) if for every
evaluation e : V ar(u) ∪ V ar(v) → I we have e(u) = e(v). The word problem for I is as
follows: given two words u, v in the alphabet {x1, x2, . . .} ∪ {x−1

1 , x−1
2 , . . .}, is it true that

u ≈I Iv?

• In [13] the author presents a solution to the word problem for the inverse semigroup
B2.

• Independently, the authors of [10] provide a quite different solution to the word
problem for the inverse semigroup B2. From both [13], [10], it is clear that the
associated computational complexity problem, the term-equivalence problem for
the inverse semigroup B2, is in P .

• As mentioned, the term-equivalence problem for the semigroup B1
2 is co-NP-complete

[14], [9]. The term-equivalence problem for the semigroup B1
2 is a sub-problem of

the term-equivalence problem for the inverse semigroup B1
2; thus, this last problem

is also co-NP-complete.

We define a variation of the alternation word digraph, Altinv(w), as follows: For U, V
non-empty disjoint subsets of V ar(w), let U → V ∈ Altinv(w) if U → V ∈ Alt(w), and
for each xi ∈ U ∪ V , we have xi, x

−1
i are not both contained in U nor are both contained

in V .
Let w be an inverse semigroup word. Assume at least one of xi, x

−1
i occurs in w. Using

the inverse semigroup identities xix
−1
i xi ≈I xi and x−1

i xix
−1
i ≈I x−1

i , we can replace the
left-most instance of xi (if xi occurs in w) with xix

−1
i xix

−1
i xi, or if xi does not occur in

w, we can replace the left-most instance of x−1
i with x−1

i xix
−1
i xix

−1
i . Let w be the word

that results from the above substitution. Of course w ≈I w and V1(w) = ∅. For w, a
finite word in {x1, x2, . . .} ∪ {x−1

1 , x−1
2 , . . .}, we define w as follows: each occurrence of xi

(an “ordinary variable”) is replaced by xiyi, and each occurrence of x−1
i is replaced by

y−1
i x−1

i .
The proof of Theorem 2.5 is very similar to that of Theorem 1.8, modified in the

appropriate places to take into account the treatment of the inverse operation in Altinv

graphs.

Theorem 2.5 Let u, v be finite words in the alphabet {x1, x2, . . .}∪{x−1
1 , x−1

2 , . . .}. Then
u is equivalent to v in the inverse semigroup B1

2 if and only if

1. Altinv(u) = Altinv(v); and

2. Altinv(ur) = Altinv(vr).

3 Proof of Theorem 1.10: complexity proofs

In this section we prove Theorem 1.10. As mentioned, the hardness results in Theorem 1.10
depend on algebraic computational complexity results from [14] and [9]. We begin by
proving Theorem 1.10.1.

13



Proof of Theorem 1.10.1. Observe that if w is a word and U and V are vertices of
Alt(w), then determining whether U → V ∈ E(Alt(w)) obviously can be checked in linear
time (with respect to |w|) by simply scanning w from left to right and recording whether
the most recent variable from U ∪ V is in U or in V . Let k be a fixed positive integer and
u, v words such that V ar(u) = V ar(v), with |V ar(u)| = n. For each disjoint non-empty
pair of subsets U and V of V ar(u) such that |U |, |V | ≤ k, test whether U → V is in
E(Alt(u)) and then whether it is in E(Alt(v)). So, to determine if Alt≤k(u) = Alt≤k(v),
it suffices to perform no more than (

(
n
k

)
+

(
n

k−1

)
+ · · · + (

n
1

)
)2 such checks. Each such

check requires O(|u| + |v|) time. Because n < |u| + |v|, it follows that an answer to the
question for a given instance {u, v} can be provided in c(|u| + |v|)2k time, where c is a
(fixed) positive integer. ¤

As a corollary of Theorem 1.8 and [14, Theorem 1.2], we shall prove that SUPPORT
and ALT-EQ are both co-NP-complete. We provide a statement of [14, Theorem 1.2]. (We
have substituted “word” for “term” in the statement of [14, Theorem 1.2] and, following
the convention used here, variables are contained in the {x1, x2, . . .}.)

Theorem 3.1 [14, Theorem 1.2] Let U be the sub-problem of the term equivalence problem
for B1

2 involving only instances of the form {qxn+1xi, qxn+1x
2
i }, where q is a word such

that V ar(q) = {x1, . . . , xn} and i ≤ n. Then U is co-NP-complete. In particular TERM-
EQ(B1

2) is co-NP-complete.

Proof of Theorem 1.10.2 and 10.3. The first part of the following claim was noted
in the first paragraph of page 325, [14]. Let w be a word f : V ar(w) → {1, a, a′}, an
N -evaluation of w. Suppose that f(w) 6= 0. Thus 0 6∈ f(V ar(w)). By substituting e(xi)
for xi for all xi ∈ V ar(w), the result is a word (possibly the empty word) in the alphabet
{a, a′}, which we denote by we.

Claim 2 Let w be a word and e : V ar(w) → B1
2 be an evaluation. Let e : V ar(w) →

{a, a′, 1} be the N -evaluation defined as follows: if xi ∈ V ar(w) and e(xi) ∈ {aa′, a′a}, let
e(xi) = 1; otherwise e(xi) = e(xi). Then the following hold:

1. e(w) 6= 0 implies e(w) 6= 0; and

2. if e(w) 6= 0 and we has length greater than 1, then e−1(a) → e−1(a′) or e−1(a′) →
e−1(a) is in E(Alt(w)).

We prove the claim. If e(V ar(w)) = {1}, the first part of the claim is obviously true.
So assume e(V ar(w)) 6= {1}. If aa′ is a divisor of e(w), then with a moment’s thought
it can be seen that replacing aa′ with 1 results in a new word (in the alphabet {a, a′})
whose value in B1

2 is non-0. The first part of Claim 2 now follows. For the second part
of the claim, suppose that e(w) 6= 0 and that we has length greater than 1. Then both a
and a′ must appear in we, from which it follows that e−1({a, a′}) = e−1({a, a′}) has more
than one variable. Because e is an N -evaluation, it follows that both e−1(a) and e−1(a′)
are non-empty. Now e(w) 6= 0 implies that e−1(a) and e−1(a′) alternate. The second part
of the claim follows.
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Claim 3 Let q be a word with V ar(q) = {x1, . . . , xi, . . . , xn} and let 1 ≤ i ≤ n. The
following are equivalent:

1. qxn+1xi ≈ qxn+1x
2
i

2. Alt(qxn+1xi) = Alt(qxn+1x
2
i )

3. xi is not contained in the support of any edge of Alt(qxn+1xi).

Claim 3, in conjunction with Theorem 3.1, suffices to prove both Theorem 1.10.3 and
Theorem 1.10.4. Proposition 2.4 guarantees that the first statement implies the second
statement. Next suppose Alt(qxn+1xi) = Alt(qxn+1x

2
i ). Because x2

i is a factor of qxn+1x
2
i ,

we have xi is not contained in the support of any edge of Alt(qxn+1xi) = Alt(qxn+1x
2
i ).

Lastly, suppose xi is not contained in the support of any edge of Alt(qxn+1xi). Let
e : V ar(qxn+1xi) → B1

2 be an evaluation. If e(xi) ∈ {a, a′}, then because xi occurs
more than once in qxn+1xi, by Claim 2.2, if e(qxn+1xi) 6= 0, then xi is contained in
the support of an edge, which would be a contradiction. Thus e(qxn+1xi) 6= 0 implies
e(xi) ∈ {1, aa′, a′a}, from which it follows that e(qxn+1xi) 6= 0 implies e(qxn+1x

2
i ) =

e(qxn+1xi). Obviously e(qxn+1xi) = 0 implies e(qxn+1x
2
i ) = 0 = e(qxn+1xi). We have

shown that Alt(qxn+1xi) = Alt(qxn+1x
2
i ), thereby completing the proof of Theorem 1.10.3

and Theorem 1.10.4. ¤

3.1 Applications of a result of Klima: proofs of Theo-
rem 1.10,4 and 5

Let S be a finite semigroup and let TERM-IDEM(S) be the problem which has an instance
a word w, with size |w|, and which asks, “Is w ≈S w2?”. As mentioned, O. Klima
independently proved the co-NP-completeness result for TERM-EQ(B1

2) [9]. He did so by
showing the co-NP-completeness of its sub-problem TERM-IDEM(S).

Theorem 3.2 ([9], page 5) TERM-IDEM(B1
2) is co-NP-complete.

Proof of Theorem 1.10.4 We need a lemma that shows that TERM-IDEM(B1
2) and

E(Alt)= ∅ are very closely related.

Lemma 3.3 If w is a word such that V ar(w) = {x1, . . . , xn} and V1(w) = ∅, then
Alt(w) = ∅ if and only if w ≈ x2

1 . . . x2
n.

Proof. Assume w is a word V ar(w) = {x1, . . . , xn} and that V1(w) = ∅. If w ≈
x2

1 . . . x2
n, then Alt(w) = Alt(x2

1 . . . x2
n), the latter graph having no edges since for each

xi ∈ V ar(x2
1 . . . x2

n), we have x2
i divides x2

1 . . . x2
n. Thus, Alt(w) = ∅.

Suppose E(Alt(w)) = ∅ and let e : V ar(w) → B1
2 be an evaluation satisfying e(w) 6= 0.

Let e : V ar(w) → {1, a, a′} be as in Observation 2. As observed there, we have e(w) 6= 0.
Because V1(w) = ∅ and e(w) 6= 0, it follows that we has length greater than 1. By the
second part of Claim 2, we have e−1(a) 6= ∅ and e−1 6= ∅, from which it follows that
e−1({a, a′}) is the support of an edge of Alt(w), contradicting that Alt(w) = ∅. Thus
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xi ∈ V ar(w) implies that e(xi) ∈ {aa′, a′a, 1}. Given that (aa′)(a′a) = 0 = (a′a)(aa′), we
have that e(V ar(w)) \ {1} consists of a single non-0 idempotent c and that e(w) = c. But
then e(w) = c = e(x2

1 . . . x2
n). Now suppose e(w) = 0. Then e(V ar(w)) 6⊆ {1, c} where

c is some non-0, non-1 idempotent. Thus e(x2
1 . . . x2

n) = 0 = e(w). We have proven that
w ≈ x2

1 . . . x2
n. ¤

We provide a lemma that characterizes idempotent words.

Lemma 3.4 Let w be a word. Then the following are equivalent:

1. w ≈ w2

2. V1(w) = ∅ and U → V ∈ Alt(w) if and only if V → U ∈ Alt(wr)

3. V1(w) = ∅ and Alt(wwr) = ∅

Proof. Suppose that w ≈ w2. Observe that V1(w) = ∅. So V1(w) = V1(w2). Now by
Theorem 1.8, we have Alt(w) = Alt(w2) and Alt(wr) = Alt((wr)2). It is not difficult to
verify that Alt(w) = Alt(w2) implies U → V ∈ Alt(w) if and only if V → U ∈ Alt(wr).
Thus the first statement of this lemma implies the second statement of this lemma. Note
that Theorem 1.8 implies that the second statement implies the first.

Suppose the second statement holds. For contradiction assume that U → V ∈
Alt(wwr). Because V ar(w) = V ar(wr), we have U → V ∈ Alt(wwr) implies that
U → V ∈ Alt(w), which by the second statement implies that V → U ∈ Alt(wr). But
then U and V do not alternate in wwr, contradicting that U → V ∈ Alt(wwr).

Suppose the third statement holds and U → V ∈ E(Alt(w)). Then U → V 6∈
E(Alt(wwr)) implies U → V 6∈ E(Alt(wr)), which in turn implies that V → U ∈
E(Alt(wr)). As remarked, the second statement implies the first; thus, the third statement
implies the first. ¤

We complete the proof of Theorem 1.10.4. Let {w} be an instance of TERM-IDEM(B1
2).

We map {w}, with V ar(w) ⊆ {x1, . . . , xn}, to an instance of E(ALT)= ∅ as follows: if
V1(w) 6= ∅, then map {w} to {wxn+1}; otherwise, map {w} to {wwr}. Determining
whether V1(w) = ∅ can be done in polynomial time; thus, the mapping above is polyno-
mial with respect to size.

Note that Alt1(w) 6= ∅ implies w 6≈ w2 and that Alt(wxn+1) 6= ∅. If V1(w) = ∅, then
by Lemma 3.4, we have w ≈ w2 if and only if Alt(wwr) = ∅. This completes the proof.¤

We provide a second proof of the co-NP-completeness of ALT-EQ.

Corollary 3.5 ALT-EQ is co-NP-complete.

Proof. That E(ALT)= ∅ is co-NP-complete implies that the sub-problem of ALT-EQ
consisting of instances of the form {w, x2

1 . . . x2
n} is co-NP-complete. ¤

Proof of Theorem 1.10.5 Let {w} be an instance of TERM-IDEM(B1
2). We assume

that there exists n ∈ N such that V ar(w) = {x1, . . . , xn}, an assumption that can easily
be verified to have no effect on hardness.
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We map {w}, with V ar(w) = {x1, . . . , xn}, to an instance of FREE–0 as follows: if
V1(w) 6= ∅, map {w} to {(w, n)}; if V1(w) = ∅, map {w} to (wwr, n). This mapping is
polynomial in size.

If V1(w) 6= ∅, then as mentioned w 6≈ w2. Obviously, V1(w) 6= ∅ implies w 6≈ x2
1 . . . x2

n,
for any n. If V1(w) = ∅, then by Lemma 3.4, we have w ≈ w2 if and only if Alt(wwr) = ∅.
Because V1(wwr) = ∅ by Lemma 3.3 we have that wwr ≈ x2

1 . . . x2
n. This completes the

proof.¤

4 Conclusion

We finish with questions that may be of interest for further research.

Definition 4.1

1. For a positive integer k, a word w is k-letter-uniform if each letter in w appears
exactly k times.

2. If w is k-uniform for some k, then w is said to be letter-uniform. Let UniAlt be
the set of all alternation word digraphs of letter-uniform words.

3. A word w = w1 . . . wj is a permutation-product if for 1 ≤ a ≤ b ≤ j, we have
V ar(wa) = V ar(wb) and wa is 1-letter-uniform. Let P ∗Alt be the set of all alter-
nation word digraphs of permutation products.

4. For a word w, let alternation word graph of w, denoted alt(w), be the undirected
graph version of Alt(w). Let alt1 be {alt1(w) : w is a finite word}.

Problem 1 Is the restriction of either ALT-EQ or ALT = ∅ to uniform words or to
permutation products still co-NP-complete?

The alt1 graphs were studied in [8], where it is shown that every alt1 graph is locally
comparable; that is, for xi a vertex of a alt1(w), the induced subgraph on Nbd(x1), the
set of neighbors of x1 in alt1(w), is the comparability graph of a poset. The following is
a slight reformuation of Problem 1, [8].

Problem 2 True or false? If G is a finite locally comparable graph with vertices V , then
there exists a word w, with V ar(w) = V such that alt1(w) = G.

Let C be a type of word graphs (or digraphs) and let C be the set of words associated
with C. For example, C might be P ∗Alt graphs with C the permutation products, or C
might be the set of all alt1 graphs, in which case, C is then the set of all words. For a
word s ∈ C, let GC(s) denote the graph in C associated with s.

Definition 4.2 1. For a fixed word graph type, and for w ∈ C, let lC(w) = min{|u| :
u ∈ C, GC(u) = GC(w)}, the C–length of w.
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2. For a fixed word graph type, and for w ∈ C, let lCn = max{lC(w) : w ∈ C and
V ar(w) ⊆ {x1, . . . , xn}}.

It is not difficult to prove that 2n−1 ∈ O(lAlt
n )6, but more difficult to show that (lP

∗Alt
n )

is in O(n3), as in proven in [16].

Problem 3 1. Find a polynomial p(n) such that (lalt1
n ) ∈ O(p(n)), if such a polyno-

mial exists.

2. Find a polynomial p(n) such that (lUniAlt
n ) ∈ O(p(n)), if such a polynomial exists.

A monoid M is aperiodic if all its subgroups are trivial. It is not difficult to show
that a finite monoid M is aperiodic if and only if there exists a positive integer k such that
xk+1 ≈M xk and that xk+1 ≈M xk implies xk ≈M x2k. Thus, if M is a finite aperiodic
monoid with commuting idempotents, then xk

1 . . . xk
n is the zero of Fn(M). For a finite

aperiodic monoid with commuting idempotents M, define the computational complexity
problem FREE–0(M) as follows: an instance is {w, n}, where w is a word in the alphabet
{x1, . . . , xn}, with size |w|, and the question is, “Is w ≈ xk

1 . . . xk
n?”.

Conjecture 1 The following conjecture is a variant of [Problem 3, page 321, [14]]: Let
M be a finite aperiodic monoid with commuting idempotents. Then TERM-EQ(M) is
co-NP-complete if and only if FREE–0(M) is co-NP-complete if and only if B1

2 is in the
pseudovariety generated by M.

Note Though it has no bearing on this paper, it is important to point out that in [15],
the usage of “subword” differs from its usage here: A subword in [15] has the same meaning
as “divisor” in this paper; “subsequence” in [15] has the same meaning as “subword” in
this paper. The usage here of “subword” is more standard.

References

[1] S. Burris and J. Lawrence, The equivalence problem for finite rings, Journal of Sym-
bolic Computation 15 (1993), 67–71.

[2] S. Burris and J. Lawrence, Results on the equivalence problem for finite groups, Alg.
Univ. 52, no.4, (2004), 495–500.

[3] G. Higman, The orders of relatively free groups, Proc. Internat. Conf. Theory of
Groups, Austral. Nat. Univ. Canberra (1965), 153–165.

[4] G. Horvath, J. Lawrence, L. Merai, and C. Szabo, The complexity of the equivalence
problem for non-solvable groups, Bull. Lond. Math. Soc., 39, (2007), 253–260.

6Let Z1 = x1 and for n ≥ 2, let Zn = Zn−1xnZn−1. The word Zn is a Zimin word (on
the sequence x1, x2, . . . , xn). It is not difficult to show that (Zn){x2,...,xn} is a Zimin word
on the sequence x2, . . . , xn, and for n ≥ 2 that Alt(Zn) has n− 1 edges, {1 → 2 . . . n, 2 →
3 . . . n, 3 → 4 . . . n, . . . , n− 1 → n}. It follows that lAlt(Zn) ≥ 2(lAlt(Zn−1)).

18



[5] 64 Problems in Universal Algebra, workshop notes from A COURSE
IN TAME CONGRUENCE THEORY, Budapest, July 2–13, 2001,
http://www.math.u-szeged.hu/confer/algebra/2001/64problems.ps

[6] K.A. Kearnes, Congruence modular varieties with small free spectra. Algebra Univer-
salis 42 (1999), 165–181.

[7] A. Kisielewicz, Complexity of identity checking for semigroups, Internat. J. Algebra
Comput., 14 (2004), 455–464.

[8] S. Kitaev and A. Pyatkin, On representable graphs,
http://www.ru.is/kennarar/sergey/index files/Papers/repgr.pdf, Automata, Lan-
guages and Combinatorics, to appear.

[9] O. Klima, Complexity Issues of Checking Identities in Finite Monoids,
http://www.math.muni.cz/∼klima/Math/coNPidcheck.ps.

[10] S.W. Margolis, J.C. Meakin, and J. Stephen, Free objects in certain varieties of
inverse semigroups, Canad. J. Math. 42 (6) (1990), 1084–1097.

[11] P.M. Neumann, Some indecomposable varieties of groups, Quart J. Math. Oxford,
14, (1963), 46–58.

[12] P. Perkins, Bases for equational theories of semigroups, J. Algebra 11 (1969), 298–
314.

[13] N.R. Reilly, Free combinatorial strict inverse semigroups, J. London Math. Soc. (2),
39(1) (1989), 102–120.

[14] S. Seif, The Perkins Semigroup has Co-NP-complete term-equivalence problem, Int.
J. Alg. Comp. (IJAC), 15 (2) (2005), 317–326.

[15] S. Seif, Monoids with sub-log-exponential free spectra, Journal of Pure and Applied
Algebra, 212, 5, (2008), 1162–1174.

[16] S. Seif, Letter-uniform words and their graphs, manuscript.

[17] S. Seif, C. Szabo, Computational Complexity of Checking Identities in 0-Simple Semi-
groups and Matrix Semigroups over Finite Fields, Semigroup Forum, 72 (2), (2006),
207–222.

[18] S. Seif and J. Wood, Asymptotic growth of free spectra of band monoids, Semigroup
Forum 75, no. 1, (2007), 77–94.

[19] C. Szabo, and V. Vertesi, The complexity of the word-problem for finite matrix rings,
Proc. Amer. Math. Soc. 132 (2004), no. 12, 3689–3695.

[20] C. Szabo, C. and V. Vertesi, The complexity of checking identities for finite matrix
rings, Alg.Univ. 51, no. 4 (2004), 439–445.

[21] M. Volkov, Checking Identities in a finite semigroup may be computationally hard,
Studia Logica, 78, nos. 1-2, (2004), 349–356.

19


