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ABSTRACT. In [BabStein] Babson and Steingrimsson introduced gen-
eralized permutation patterns that allow the requirement that two
adjacent letters in a pattern must be adjacent in the permutation.
In [Kitl] Kitaev considered simultaneous avoidance (multi-avoidance)
of two or more 3-patterns with no internal dashes, that is, where the
patterns correspond to contiguous subwords in a permutation. There
either an explicit or a recursive formula was given for all but one case
of simultaneous avoidance of more than two patterns. In this paper
we find the exponential generating function for the remaining case.
Also we consider permutations that avoid a pattern of the form z —yz
or zy — z and begin with one of the patterns 12...k, k(k—1)...1,
23...k1, (k—1)(k—2)...1k or end with one of the patterns 12...k,
k(k—1)...1, 1k(k — 1)...2, k12...(k — 1). For each of these cases
we find either the ordinary or exponential generating functions or
a precise formula for the number of such permutations. Besides we
generalize some of the obtained results as well as some of the results
given in [Kit3]: we consider permutations avoiding certain generalized
3-patterns and beginning (ending) with an arbitrary pattern having
either the greatest or the least letter as its rightmost (leftmost) letter.

1. INTRODUCTION AND BACKGROUND

Permutation patterns: All permutations in this paper are written as

words ™ = ajas . .. a,, where the a; consist of all the integers 1,2,...,n. Let
a € S, and 7 € Sj be two permutations. We say that a contains 7 if there
exists a subsequence 1 < iy < iz < -+ < i < n such that (ay,...,q;,)

is order-isomorphic to 7, that is, for all j and m, 7; < 7, if and only if
ai; < a;,; in such a context 7 is usually called a pattern. We say that o
avoids T, or is T-avoiding, if a does not contain 7. The set of all m-avoiding
permutations in S, is denoted by S, (7). For an arbitrary finite collection of
patterns T', we say that « avoids T if a avoids each 7 € T'; the corresponding
subset of Sy, is denoted by S, (T).

While the case of permutations avoiding a single pattern has attracted
much attention, the case of multiple pattern avoidance remains less inves-
tigated. In particular, it is natural, as the next step, to consider permuta-
tions avoiding pairs of patterns 71, 5. This problem was solved completely
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for 71,72 € S3 (see [SchSim]), for 74 € S5 and 7» € Sy (see [W]), and
for 71,72 € Ss (see [B, K] and references therein). Several recent papers
[CW, MV1, Kr, MV3, MV2] deal with the case 71 € S3, 2 € S}, for various
pairs 71, 7.

Generalized permutation patterns: In [BabStein] Babson and Ste-
ingrimsson introduced generalized permutation patterns (GPs) where two
adjacent letters in a pattern may be required to be adjacent in the permu-
tation. Such an adjacency requirement is indicated by the absence of a dash
between the corresponding letters in the pattern. For example, the permu-
tation 7 = 516423 has only one occurrence of the pattern 2-31, namely the
subword 564, but the pattern 2-3-1 occurs also in the subwords 562 and
563. Note that a classical pattern should, in our notation, have dashes at
the beginning and end. Since most of the patterns considered in this paper
satisfy this, we suppress these dashes from the notation. Thus, a pattern
with no dashes corresponds to a contiguous subword anywhere in a per-
mutation. The motivation for introducing these patterns was the study of
Mahonian statistics. A number of results on GPs were obtained by Claes-
son, Kitaev and Mansour. See for example [Claes], [Kit1, Kit2, Kit3] and
[Mansl, Mans2, Mans3].

As in [SchSim], dealing with the classical patterns, one can consider the
case when permutations have to avoid two or more generalized patterns si-
multaneously. A complete solution for the number of permutations avoiding
a pair of 3-patterns of type (1,2) or (2,1), that is, the patterns having one
internal dash, is given in [ClaesMans1]. In [Kit1] Kitaev gives either an ex-
plicit or a recursive formula for all but one case of simultaneous avoidance
of more than two patterns. This is the case of avoiding the GPs 123, 231
and 312 simultaneously. In Theorem 1 we find the exponential generating
function (e.g.f.) for the number of such permutations.

As it was discussed in [Kit3], if a permutation begins (resp. ends) with
the pattern p = pyps ... pg, that is, the k leftmost (resp. rightmost) letters
of the permutation form the pattern p, then this is the same as avoidance
of k! — 1 patterns simultaneously. For example, beginning with the pattern
123 is equivalent to the simultaneous avoidance of the patterns (132], (213],
(231], (312] and (321] in the Babson-Steingrimsson notation. Thus demand-
ing that a permutation must begin or end with some pattern, in fact, we
are talking about simultaneous avoidance of generalized patterns. The mo-
tivation for considering additional restrictions such as beginning or ending
with some patterns is their connection to some classes of trees. An example
of such a connection can be found in [Kit3, Theorem 5]. There it was shown
that there is a bijection between n-permutations avoiding the pattern 132
and beginning with the pattern 12 and increasing rooted trimmed trees with
n + 1 nodes. We recall that a trimmed tree is a tree where no node has a
single leaf as a child (every leaf has a sibling) and in an increasing rooted
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tree, nodes are numbered and the numbers increase as we move away from
the root. The avoidance of a generalized 3-pattern p with no dashes and, at
the same time, beginning or ending with an increasing or decreasing pattern
was discussed in [Kit3]. Theorem 2 generalizes some of these results to the
case of beginning (resp. ending) with an arbitrary pattern avoiding p and
having the greatest or least letter as the rightmost (resp. leftmost) letter.

Propositions 4 — 15 (resp. 16 — 27) give a complete description for the
number of permutations avoiding a pattern of the form = — yz or zy — z and
beginning with one of the patterns 12...kor k(k—1)...1 (resp. 23...kl or
(k—1)(k —2)...1k). For each of these cases we find either the ordinary or
exponential generating functions or a precise formula for the number of such
permutations. Theorem 27 generalizes some of these results. Besides, the
results from Propositions 4-27 give a complete description for the number of
permutations that avoid a pattern of the form x —yz or zy — z and end with
one of the patterns 12...k, k(k—1)...1, 1k(k—1)...2 and k¥12...(k—1).
To get the last one of these we only need to apply the reverse operation
discussed in the next section. The results of Theorems 2 and 27 can also be
used to get the case of ending with a pattern from the sets A" or Aa®
introduced in the next section.

Except for the empty permutation, every permutation ends and begins
with the pattern p = 1. To simplify the discussion we assume that the
empty permutation also begin with the pattern 1. This does not course any
harm since, to count the generating functions in question for this, we need
only subtract 1 from the generating functions obtained in this paper.

2. PRELIMINARIES

The reverse R(w) of a permutation 7 = aias . ..a, is the permutation
GnGp—1 ---a1. The complement C () is the permutation bybs . ..b, where
bi =n+1—a;. Also, Ro C is the composition of R and C. For example,
R(13254) = 45231, C(13254) = 53412 and R o C(13254) = 21435. We call
these bijections of S,, to itself trivial, and it is easy to see that for any
pattern p the number A,(n) of permutations avoiding the pattern p is the
same as for the patterns R(p), C(p) and RoC(p). For example, the number
of permutations that avoid the pattern 132 is the same as the number of
permutations that avoid the pattern 231. This property holds for sets of
patterns as well. If we apply one of the trivial bijections to all patterns of a
set G, then we get a set G' for which Agr(n) is equal to Ag(n). For example,
the number of permutations avoiding {123,132} equals the number of those
avoiding {321, 312} because the second set is obtained from the first one by
complementing each pattern.

In this paper we denote the nth Catalan number by C,; the generating
function for these numbers by C(z); the nth Bell number by B,,.
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Also, NP(n) denotes the number of permutations that avoid the pattern
g and begin with the pattern p; G¥(z) (resp. Ef(z)) denotes the ordinary
(resp. exponential) generating function for the number of such permuta-
tions. Besides, I (resp. I'7*®) denotes the set of all k-patterns with no
dashes such that the least (resp. greatest) letter of a pattern is the right-
most letter; AT (resp. A'9%) denotes the set of all k-patterns with no
dashes such that the least (resp. greatest) letter of a pattern is the leftmost
letter.

Recall the following properties of C(z):

1—+1-4z 1
() Cle) = 2z T 1-2C@)

3. SIMULTANEOUS AVOIDANCE OF 123, 231 AND 312

The Entringer numbers E(n,k) (see [SloPlo, Seq. A000111]) are the
number of permutations on 1,2,...,n + 1, starting with k + 1, which, after
initially falling, alternately fall then rise. The Entringer numbers (see [Ent])
are given by

E(0,0) =1, E(n,0) =0,
together with the recurrence relation
E(n,k)=E(n,k—1)+ E(n—1,n—k).
The numbers E(n) = E(n,n), are the secant and tangent numbers given by
the generating function
secr + tanx.
The following theorem completes the consideration of multi-avoidance of
more than two generalized 3-patterns with no dashes made in [Kit1].

Theorem 1. Let E(z) be the e.g.f. for the number of permutations that
avoid 123, 231 and 312 simultaneously. Then

E(z) =1+ z(sec(x) + tan(x)).
Proof. Let s(n;i1,...,4,) denote the number of permutations 7 in the set

Sn(123,231,312) such that m 7 ... 7Ty = 142 . .9y and f: S, — S, be a
map defined by

flmmg...my) = (m + 1) (w2 + 1) ... (mp + 1),

where the addition is modulo n. Using f one can see that for all 1 < a <
n—1,

(2) s(n;a) = s(ny;a+1).

Thus, |5,(123,231,312)| = ns(n; 1) and we only need to prove that s(n;1) =
E, 1, where E,, is the nth Euler number (see [SloPlo, Seq. A000111}).
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Suppose 7 € S,(123,231,312) is an n-permutation such that 7; = 1 and
me = t. Since 7w avoids 123, we get w3 <t — 1 and it is easy to see that

t—1
s(n;1,1) an,l,t1=2 (n—1;¢t—1,),
j=2

j=1
o)
t—1 t—2
s(n;1,t+1) =s(n;1,t)+23(n—1;t,j) —Zs(n—l;t—l,j).
7j=1 7j=1

Using the map f that proves (2) we get
s(n;1,t+1) = s(n;1,t) + s(n — 1;¢,1)

t—1 t—2
=2 j=1

and by the map f again, we have for all t =2,3,...,n — 1,
s(n;1,t+1) =s(n;1,8) +s(n—1;1,n—¢t+1).

Besides, by the definition, it is easy to see that s(n;1,2) = 0 for all n > 3,
hence using the definition of Entringer numbers [Ent] we get that s(n;1) =
n

Z s(n;1,t) = E,_1, as required. d
t=2

4. AVOIDING A 3-PATTERN WITH NO DASHES AND BEGINNING WITH A
PATTERN WHOSE RIGHTMOST LETTER IS THE GREATEST OR SMALLEST

The following theorem generalizes Theorems 7 and 8 in [Kit3]. Recall that
according to Section 2, EP(z) denotes the exponential generating function
for the number of permutations that avoid the pattern ¢ and begin with the
pattern p.

Theorem 2. Suppose pi,p> € I'™™ and p1 € Si(132), p» € S;(123).
Thus, the complements C(p1),C(p2) € T7*** and C(p1) € Sk(312), C(p2) €
Sk(321). Then, for k > 2,

Jyt e /2 dt

D1 _ pC(p) —
El3p(x) = Egyy  (2) = (k—1)(1 - foz /2 dp)

and

e?/? [¥ emt/2th 1 sin( Lt + 1)) dt

EP2(z) = EC(m)( ) =
128 (k—1)! cos(@x + %)

Proof. Let p € {p1,p2}. To prove the theorem, it is enough to copy the
proofs of Theorems 7 and 8 in [Kit3], since the fact that the first k¥ — 1
letters of p are possibly not in decreasing order is immaterial for the proofs
of that theorems. Thus we can get the formula for EY;, (z) and EV,,(z), and
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automatically, using properties of the complement, the formula for Eg(f ) (z)

and E;;(lp ) (z), directly from these theorems. However we give here a proof
of the formula for EY,, () and refer to [Kit3, Theorem 8] for a proof of the
formula for EYV,, ().

If £ = 1, we have no additional restrictions, that is, we are dealing only
with the avoidance of 132 and, according to [ElizNoy, Theorem 4.1] or [Kit2,
Theorem 12],

1

1 —
Fraal®) = 7w s gy

Also, according to [Kit3, Theorem 6],

efz2/2

1— [ e ®/2adt

Let Ry (resp. Fy ) denote the number of n—permutations that avoid
the pattern 132 and begin with a pattern of type p; (resp. of type C(p1))
of length £ > 1 and let 7 be such a permutation of length n + 1. Suppose
m = ol7. If 7 is empty then, obviously, there are R, ; ways to choose o. If
|7| = 1, that is, 1 is in the second position from the right, then there are
n ways to choose the rightmost letter in 7 and we multiply this by Ry n—1,
which is the number of ways to choose o. If |7| > 1 then 7 must begin
with the pattern 12, otherwise the letter 1 and the two leftmost letters
of 7 form the pattern 132, which is forbidden. So, in this case there are
Eizo (?)Ri,an_i,g such permutations with the right properties, where ¢
indicates the length of o. In the last formula, of course, R;, = 0if ¢ < k.
Finally we have to consider the situation when 1 is in the k-th position.
In this case we can choose the letters of o in (,",) ways, write them in
decreasing order and then choose 7 in Fj,_; 41 2 ways. Thus

n n
(3) Rpyix=Rpp+nRp_1p+ Z (i)Ri,an—i,Z + (k _ 1) Fokt1,2-

i>0

We observe that (3) is not valid for n = k—1 and n = k. Indeed, if 1 is in
the kth position in these cases, the term (,",)Fn_+1,2, which counts the
number of such permutations, is zero, whereas there is one “good” (n +1)-
permutation in case n = k — 1 and n good (n + 1)-permutations in case
n = k. Multiplying both sides of the equality with 2™ /n!, summing over n
and using the observation above (which gives the term z*¥~1 /(k—1)!+kz* / k!
in the right-hand side of equality (4)), we get

d :Uk_l

() g Plan(@) = (Bifa(0) + 2+ DEln() + (BR() + 2+ Vg
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with the initial condition EY,,(0) = 0. We solve this equation and get

Ef35(2) b 1
_ Bl (@) f (Eig(t) +t+ 1)t di = Ei35(2) f‘tkfleft2/2 dt.
-~ (k=1 Efs,(t) (k=1!p

O

Remark 3. Tt is obvious that if in the previous theorem p; & Si(132) and
P2 & Sk(123), then Efz, () = Ef3;(x) = 0.

5. AVOIDING A PATTERN X-YZ AND BEGINNING WITH AN INCREASING OR
DECREASING PATTERN

In this section we consider avoidance of one of the patterns 1 —23, 1—32,
2-31,2-13,3 —12 and 1 — 32 and beginning with a decreasing pattern.
We get all the other cases, that is, avoidance of one of these patterns and
beginning with an increasing pattern, by the complement operation. For
instance, we have EX" V-1 () = 125k (z).

Proposition 4. The exponential generating functions Ek(’c - 1(.10) and
Fk=1)..1
1 ag 7 (x) are given by
(€ (k=1 [yt te ' at, ifk>2,
e 1, ifk=1.

Proof. We prove the statement for the pattern 1 —23. All the arguments we
give for this pattern are valid for the pattern 1 — 32. The only difference is
that instead of decreasing order in 7 (see below), we have increasing order.

Suppose k > 2. Let B, denote the number of n—permutations that
avoid the pattern 1 — 23 and begin with a decreasing subword of length k.
Suppose m = o171 is one of such permutations of length n 4+ 1. Obviously,
the letters of 7 must be in decreasing order since otherwise we have an
occurrence of 1 — 23 in 7 starting from the letter 1. If |o| = i then we can
choose the letters of ¢ in (?) ways. Since the letters of 7 are in decreasing
order, they do not affect o and thus there are B; . possibilities to choose o.
Besides, if |o| = k — 1 and letters of o are in decreasing order, we get (
additional possibilities to choose w. Thus

n n
Bn—i-l,k:Z(.)Bi,k‘f‘( >
= ) k—1

Multiplying both sides of the equality with z™/n! and summing over n,
we get the differential equation

k)

d _k(k—1)..1 B(k—1)...1 e
%E1 23 (z) = (By a3 ($)+m)e
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with the initial condition Efg;gl)“'l(O) = 0. The solution to this equation
is given by

(5) B ) = (e e - 1)) [t
0

If k£ = 1, then there is no additional restriction. According to [Claes,
Prop. 2] (resp. [Claes, Prop. 3]), the number of n-permutations that avoid
the pattern 1-23 (resp. 1-32) is the nth Bell number and the e.g.f. for the
Bell numbers is e*”~'. However, all the arguments used for k > 2 remain
the same for the case k = 1 except for the fact that we do not count the
empty permutation, which, of course, avoids 1-23. So, if k¥ = 1, we need to
add 1 to the right-hand side of (5):

x
E! y(z) =€ / et dt+1=¢""1.
0

Proposition 5. We have

e” z 7et tn .
k(k—1)...1 e Joe Z — dt, ifk>2,
E3£12 ) (z) = n>ko1 n:

e ifk=1.

Proof. Suppose k > 2. Let By, ;, denote the number of n—permutations that
avoid the pattern 3 — 12 and begin with a decreasing subword of length k.
Suppose m = o(n + 1)7 is such a permutation of length n + 1. Obviously,
the letters of 7 must be in decreasing order since otherwise we have an
occurrence of the pattern 3 — 12 in 7 starting from the letter (n + 1). If
lo| =i then we can choose the letters of ¢ in (7}) ways. Since the letters
of 7 are in decreasing order, they do not affect o and thus there are B;
possibilities to choose o. Besides, if n > k — 1, then 7 can be decreasing,
that is, (n + 1) can be in the leftmost position. Thus

n
Boiig = Z (i>Bz’,k + 0n ks

i>0

where
5= 1, ifn>k-1,
k=100, else.

Multiplying both sides of the equality with 2™ /n! and summing over n, we
get the differential equation

d —1)... z —1)... T
ZES @) = B 0+ Y D
n>k—1

n
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with the initial condition E§£’§;1)"'1(0) = 0. The solution to this equation
is given by
— £ z t tn
©) BV ) = [ Y D
0 n>ho1 "

If £ = 1, then there is no additional restriction. In [Claes, Prop. 3] it
is shown that E} ,,(z) = e ~'. Using the complement, the number of n-
permutations that avoid 1—32 is equal to the number of n-permutations that
avoid 3 — 12. We get that E}_,,(x) = e¢ ~'. However, all the arguments
used for the case k > 2 remain the same for the case k£ = 1 except the
fact that we do not count the empty permutation, which avoids 3-12. So, if
k =1, we need to add 1 to the right-hand side of (6):

T
E} ,(z) =€ / e et dt+1=¢"""

0
O
Proposition 6. We have
0, if k>3,
By @) = e [Te et —1) dt, ifk=2,
e 1, ifk=1.

Proof. For k > 3, the statement is obviously true. If & = 1, then the
statement follows from [Claes, Prop. 2] and the fact that there are as many
n-permutations avoiding the pattern 1 — 23, as n-permutations avoiding the
pattern 3 — 21. For the case k = 2, we can use exactly the same arguments
as those in the proof of Proposition 5 to get the same recurrence relation
and thus the same formula, which, however, is valid only for k& = 2. O

Recall that according to Section 2, N¥ denotes the number of permuta-
tions that avoid the pattern ¢ and begin with the pattern p.

Proposition 7. We have

—1)... Ch_ki1, ifn>k,
NGy = { e 2

Proof. If k = 1, then the statement follows from [Claes, Prop. 7]. Suppose
k > 2 and let # = on7 be an n-permutation avoiding 2 — 31 and beginning
with the pattern k(k — 1)...1. Suppose, without loss of generality that
o consists of the letters 1,2,...,4. Now £ must be the rightmost letter
of o, since otherwise £, the rightmost letter of ¢ and n form the pattern
2 — 13. Also, the letter (¢ — 1) must be next to the rightmost letter of o
since otherwise the letter (£ — 1), next to the rightmost letter of o and the
letter £ form the pattern 2 — 13. And so on. Thus o must be increasing,
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which contradicts the fact that 7 must begin with a decreasing pattern
of length greater than 1. So |o| = 0 and 7 must begin with the pattern
(k=1)(k—2)...1. Now, we can consider the letter (n — 1) and, by the
same reasoning, get that it must be in the second position of 7. Then we
consider (n — 2), and so on up to the letter (n — k + 2). Finally, we get that
7=n(n—1)...(n — k+ 2)7’, where 7' must avoid the pattern 2 — 13 and
thus, there are Cp,_ 41 ways to choose 7 ([Claes, Prop. 7]). O

Recall that C(z) is the generating function for the Catalan numbers. Also
recall that according to Section 2, G¥(x) denotes the ordinary generating
function for the number of permutations that avoid the pattern g and begin
with the pattern p.

Proposition 8. We have

k1 vk :
kh=1)..1, \ _ | ¥ 1C*(x), ifk>2
G (@) = { C(x), ifk=1.

Proof. If k = 1, then there is no additional restriction, and thus G}_5, (z) =
C(z) (applying the complement operation to [Claes, Prop. 7]).

Suppose k > 2. Using the reverse, we see that beginning with k(k—1)...1
and avoiding 2 — 31 is equivalent to ending with 12. ..k and avoiding 13 —2,
which by [Claes, Lemma 2] is equivalent to ending with 12. .. k and avoiding
1-3-2.

Suppose m = w'nw’" ends with 12...k and avoids 1 — 3 — 2. Each letter
of #' must be greater than any letter of 7, since otherwise we have an
occurrence of the pattern 1 — 3 — 2 involving the letter n. Also, 7' and
7'" avoid the pattern 1 — 3 — 2, and 7" ends with the pattern 12...k.
In terms of generating functions (the generating function for the number
of permutations ending with 12...k and avoiding 1 — 3 — 2 is, of course,
Gg(_k;ll)"'l(w)) this means that

M G @) = 0@ @) + G (@),

where the rightmost term corresponds to the case when «” is empty. Now,
(1) and (7) give GE¥ D (2) = 2k1C(2) /(1 — 2C(x))F " = z¢—'Ck(a).
O

6. AVOIDING A PATTERN XY-Z AND BEGINNING WITH AN INCREASING OR
DECREASING PATTERN

First of all we state the following well-known binomial identity

SRR i ([ (A B s

i=1
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Let sq(n) denote the cardinality of the set Sy (q) and s4(n;i1,i2,...0m)
denote the number of permutations 7 € S, (¢) with my 72 ... T, = 4182« iy
In this section we consider avoidance of one of the patterns 12-3, 13-2
and 23-1 and beginning with an increasing or decreasing pattern. We get
all the other cases, which are avoidance of one of the patterns 32-1, 31-2
and 21-3 and beginning with an increasing or decreasing pattern, by the

complement operation. For instance, we have Ni2--:f(n) = Né“ff;l)"'l(n),

6.1. The pattern 12 — 3. We first consider beginning with the pattern
p=k...21. In [ClaesMans2, Lemma 9] it was proved that

i1 .
. 1—1 .
s12-3(n;i) = Z ( . )3123(n_2_])>
—~\ J
J
together with s15_3(n;n) = s1a—3(n;n — 1) = s12_3(n — 1).
On the other hand, from the definitions, it is easy to see that

k(1) n—k+1 n i
—1)..1 - :
NiZs (n) = ; (k_1>8123(n—k+1;2).
Hence, using (8) and the fact shown in [Claes, Prop. 2] that s;2—3(n) equals
B,,, we get the following proposition.
Proposition 9. For all n > k + 1, we have

N5 n) = (k + 1) Boit

n—k—2

+0 () =R = (059) Bakeres,

together with Nféf;l)“'l(k) =1 and leéfgl)'“l(n) =0foralln<k-—1.

Now, let us consider beginning with the pattern p = 12...k. From the
definitions, it is easy to see that Ni2-:(n) = 0 for all n, where k > 3, and
N, _5(n) = s12-3(n) = B, (see [ClaesMansl, Prop. 3]). Thus, we only
need to consider the case k = 2.

Suppose ™ € S12_3(n) is a permutation with m; < mo. It is easy to see
that my = n. Hence N{3_5(n) = (n — 1)s12_3(n — 2), for all n > 2, and by
[ClaesMans1, Prop. 3], we get the truth of the following
Proposition 10. The exponential generating function Ei2-¥(z) is given

by

(0, if k>3,
k 4
22y (1—jz)~! Z , ifk=2,
9 =0 4>0 (1 - :E)(l - 233') - (1 — d;c)
a fk=1
) I3 = 1.
| 5 (1-o)(1-22)...(1-do)
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6.2. The pattern 13 — 2. Now we find G’fgk_;l)...l(n)_
Proposition 11. For any k > 1,

Giss! ! (@) = 2* C*H (a).

Proof. Claesson [Claes, Lemma 2] proved that the set of permutations that
avoid the pattern 13 — 2 is the same as the set of permutations that avoid
the pattern 1 — 3 — 2, hence

9) GEFD @) = GEE ) (@),

Let 7 = («',n,n") avoids 1 — 3 — 2 and beginning with k(k — 1)...1.
Since m avoids 1 — 3 — 2, 7' and 7" avoid 1 — 3 — 2, and every letter in
w' is greater than any letter in 7. We have two possibilities: either 7’ is
empty or 7' begins with k(k —1)...1. One can see that in the first (resp.
second) case the generating function for the number of such permutations

is xG%:é)(k_z)“'l(x) (resp. xGlfélSl)l(x)C(x)) Hence, for k > 2 we have
Gl () = 2G5y @) + 26 () C @),
with G17*7%(z) = C(2) — 1 = 2C?(z). The rest is given by induction on
k. O
Now, let us consider the case of Ni2-:(n).
Proposition 12. Let k > 1. For all n > k, we have
Ni35' (n) = Cngi.
Proof. Suppose m = n'nz’ is a permutation in S, (13 —2) = S,(1 —3 —2)

(see (9)), such that m; < w2 < --- < 7. It is easy to see that there exists
an m such that

m=(m+1)(m+2)...(m+k—1)nz",

where § is a 1 — 3 — 2-avoiding permutation on the letters m + k,m + k +

1,...,n—1,and 7" € S, (1—3—2). Hence, in terms of generating functions,
we get

DN )" = 2*CP(x).

n>0
The rest is easy to check using the identity xC?%(z) = C(z) — 1. O

6.3. The pattern 23 — 1. We first consider beginning with the pattern
p=k(k—-1)...1.
Proposition 13. For allk > 1,

d

Kh—1)o1, \  j_1 z -
E33Z4 () == dz>0 1—-2)(1—2z)---(1—dx) 1
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Proof. Let m € S,(23 — 1) be a permutation such that m; < my < --+ < k.
Since m avoids 23 — 1, we have 7; = j, for each j =1,2,...,k — 1. Hence
m=12...(k — 1)n', where 7' is a non-empty 23 — 1-avoiding permutation
in Sp4+1—k. The rest is easy to get by using [ClaesMansl, Prop. 17]. O

Now let us consider beginning with the pattern p =12...k.
Proposition 14. Suppose k > 1. For alln > k+1,

Ngtm) = (14 (7)) Buos + 2 B o G -

with N3z (k) = 1.

Proof. In [ClaesMans2, Lemma 16] proved that for all 2 <i <n — 1,

i—2

: i—2 :
sracsoii) =3 (1 ol =2 ),
P J
J
together with 823_1(n;n) = 523_1(7’L; 1) = 823_1(TL — 1) = Bn—l-
On the other hand, by the definitions, it is easy to see that

n—k+1 n—i
12...k — B -
Nyz“i'(n) = z=21 (k_1)523—1(n—k+1,l).
Hence, using (8) and the fact that [Claes, Prop. 4] sa23_1(n) is given by B,
we get the desired result. O

7. AVOIDING A PATTERN XY-Z AND BEGINNING WITH THE PATTERN
(k—1)(k—2)...1k OR 23...kl

In this section we consider avoidance of one of the patterns 12—3, 13— 2,
23—-1,21-3,31—2 and 13 — 2 and beginning with the pattern (k—1)(k —
2)...1k. The case when a permutation begins with the pattern 23...%1 and
avoids a pattern zy — z can be obtained then by the complement operation.

7.1. Avoiding 12 — 3 and beginning with (k —1)(k —2)...1k.
Proposition 15. We have

)k -1
NED-2 2k (:_ 1>Bn—k-

Proof. Suppose m = w'nw" avoids the pattern 12 — 3 and begins with the
pattern (k — 1)(k — 2)...1k. We have that 7' must be decreasing, since
otherwise we have an occurrence of the pattern 12 — 3 involving the letter
n, and 7" must avoid 12 — 3. Also, since 7 begins with (k — 1)...21k, the
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length of 7' is k—1. Hence, by [Claes, Prop. 2] (the number of permutations
in S, (12 — 3) is given by B,,), we have
Nl(;c:;)(k—m...m(n) _(r-1 B, ..
k-1
O

7.2. Avoiding 13—2 and beginning with (k—1)(k—2)...1k. By [Claes,
Lemma 2], a permutation 7 avoids the pattern 13 — 2 if and only if = avoids
1-3-2.

Suppose © = w'nx"" is an n-permutation avoiding 1 —3 —2 and beginning
with (k—1)(k—2)...1k. Obviously, 7’ and 7" avoid 1 —3—2 and each letter
of ' is greater than any letter of 7", since otherwise we have an occurrence
of the pattern 1 — 3 — 2 involving the letter n. Also, 7' begins with the
pattern (k—1)(k—2)...1korn' =(k—1)(k—-2)...1.

By [Knuth], the generating function for the number of permutations that
avoid 1 — 3 — 2 is C(z), hence, using the considerations above,

G5y 7 (@) = 2GR @) C (@) + 2 O(a).
Therefore, by (1), we get the following.
Proposition 16. We have

Giy 7M@) = 24 CP(w).

Hence
(k=1)(k=2)..1k, \ _ | Ch_k—1), #fn>k
Nz (n) = { 0, else.

7.3. Avoiding 21 — 3 and beginning with (k—1)(k—2)...1k. If £ > 3
then, by the definitions, we have Néf:;)(k_2)“'1k(n) =0. If £k = 1 then,
by the definitions and [Claes, Prop. 4], we have N, _;(n) = B,. Suppose
k=2 and 7 = n'nx"" is an n-permutation avoiding the pattern 21 — 3 and
beginning with the pattern (k — 1)(k — 2)...1k = 12. It is easy to see that
7' must be increasing, and the length of 7’ is at least 1. Thus, using the fact
that the number of permutations in S, (21 — 3) is given by B,, (see [Claes,
Prop. 4]), we have

n—1
_ _ -1
(10) NEDE Tk  § (”j )Bnlj-

Jj=1

n—1
—1
Since B,, = Z (n i )Bn—l—j7 equality (10) gives that
j=0

Néf:;)(k_z)“'lk(n) =B, —B,_,.

Thus we have proved the following.
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Proposition 17. We have

0, ifk>3
Nz(f:gl,)(kfﬂlk(n) — Bn _ Bn—l, ’&f k= 2}
B, ifk=1.

7.4. Avoiding 23 — 1 and beginning with (k —1)(k —2)...1k.

Proposition 18. The number Nég:ll)(kfz)"'lk(n) is given by
n—k+2 t—2
t+k—3 t—2 _
Bugt ( e )z( j )B k>3
t=2 7=0
B, 1, ifk=2,
B,, ifk=1.

Proof. Suppose k = 2. We are interested in the permutations 7 € S, (23 —
1) that begin with the pattern 12. It is easy to see that m; = 1, hence
B3~ '(n) = B, for all n > 2.

Suppose k > 3. We recall that s23_1(n;t) is the number of permutations
in S,(23 — 1) having ¢ as the first letter. If now j denotes the number of
letters between the letters ¢ and 1, then by [ClaesMansl], s(n;1) = B,
and for ¢ > 2, we have

t—2
s23-1(n;t) = Z (t j 2) Bp—oj.
j=0

On the other hand, if a permutation 7 = 7’17 avoids 23 — 1 and begins
with the pattern (k —1)(k — 2)...1k, then 7' is decreasing of length k — 2,
and using sa3_1(n;t), we get

n—k+1 t—2
k—1)(k—2)...1k t+k—3 t—2
WDt = 3 () 2 ()

=0
O

7.5. Avoiding 31-2 and beginning with (k—1)(k—2)...1k. By [Claes,
Lemma 2], a permutation 7 avoids the pattern 31 — 2 if and only if = avoids
the pattern 3 — 1 — 2.

Suppose m = 7’17 is an n-permutation avoiding 3 — 1 — 2 and beginning
with (k—1)(k—2)...1k. Obviously, ' and 7" avoid 3—1—2 and each letter
of 7' is smaller than any letter of ©"”, since otherwise we have an occurrence
of the pattern 3 — 1 — 2 involving the letter 1. Also, 7’ begins with the
pattern (k—1)(k—2)...1kor ' = (k—1)(k—2)...2 and «" is not empty.
So, using the generating function for the number of permutations avoiding
the pattern 3 — 1 — 2, which is C(z) ([Knuth]), we get

G E R ) = 26T E R (@) O(e) + 2FH(C(2) - 1).
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Therefore, using (1), we get the following.
Proposition 19. We have
k3 :
(k=1)(k=2)..1k,  _ | x"C%(z), if k> 2,
G @*‘{C@L ifh=1
Hence

C1)(k—2)... Corrs — Coprrs if k> 2,
Ngff,zl)(k 2) lk(n) _ { o k42 k41 z‘j‘lk 2

7.6. Avoiding 32 — 1 and beginning with (k —1)(k —2)...1k.
Proposition 20. We have

0, ifk>4

B, 1—(n—-2)B,_3, ifk=3andn>3,

B, — (n—1)B,_2, ifk=2 andn > 2,

N?Eg:ll)(k72)mlk (n) _

Proof. Using the definitions and [Claes, Prop. 2], it is easy to see that the
statement is true for k. = 1,2 and k > 4.

Suppose now that £ = 3 and 7 = 7'1#" is an n-permutation avoiding the
pattern 32 — 1 and beginning with the pattern (k —1)(k — 2)...1k = 213.
We have that 7' must be increasing, since otherwise we have an occurrence
of the pattern 32 — 1 involving the letter 1, and 7" must avoid 32 — 1.
Moreover, since 7 begins with 213, the length of 7 is 1 and the rightmost
letter of 7"’ is greater than the letter of #'. Also, it is easy to see that the
number of permutations in S,,—_1(32 — 1) beginning with the pattern 12 is
the same as the number of permutations in S, (32 — 1) beginning with the
pattern 213 (one can see it by placing 1 in the second position). Hence

NED2 () = B, ; — (n—2)B, 3 for all n > 3. 0

8. AVOIDING A PATTERN X-YZ AND BEGINNING WITH THE PATTERN
(k—1)(k—2)...1k OoRr 23...kl

In this section we consider avoidance of one of the patterns 1 —23, 1—32,
2-31,2-13,3—12 and 1 — 32 and beginning with the pattern (k—1)(k —
2)...1k. The case when a permutation begins with the pattern 23...%k1
and avoids a pattern x — yz can be obtained by the complement operation.

Proposition 21. We have

= t t"
e [Tee E — dt, ifk>2

k—1)(k—2)...1k 0 ) Z 4
EL32)( ) (z) = n>k—1 n!

e 1 ifk=1.
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Proof. Suppose k > 2. Let By, ;, denote the number of n—permutations that
avoid the pattern 1 — 32 and begin with the pattern (k — 1)(k — 2)...1k.
Suppose m = ¢17 is such a permutation of length n+1. Obviously, the letters
of 7 must be in increasing order, since otherwise we have an occurrence of
the pattern 1 — 32 in 7 starting from the letter 1. If |o| = 4, then we can
choose the letters of ¢ in (’;) ways. Since the letters of 7 are in increasing
order, they do not affect o and thus there are B;; possibilities to choose
o. Also, if n > k — 1, then 1 can be in the (k — 1)th position, and in this
case, since 7 begins with the pattern (k¥ — 1)(k — 2) ... 1k, it must be that
7= (k—-1)(k—2)...21k(k+1)...(n + 1). Thus, in the last case we have
only one permutation. This leads to the recurrence relation

n
Boiigr = Z <i>Bi,k + 0 ks

i>0
where

6nk:

)

1, ifn>k-1,
0, else.

This recurrence relation is identical to the one given in the proof of Propo-
sition 5, so using this proof we get the desired result. O

Proposition 22. We have
(k=1)(k=2)..1k, \ _ e fo fot %er_et drdt, if k> 2,
Ey” 93 (z) = 1 )
e , if k=1.
Proof. If k = 1, then the statement is true due to Proposition 4.

Suppose k > 2. Let By, ;, denote the number of n-permutations that avoid
the pattern 1 — 23 and begin with the pattern (k—1)(k—2)...1k. Suppose
m = ol7 is such a permutation of length n + 1. Obviously, the letters of 7
must be in decreasing order since otherwise we have an occurrence of the
pattern 1 — 23 in 7 starting from the letter 1. If |o| = 4, then we can choose
the letters of ¢ in (’:) ways. Since the letters of 7 are in the decreasing
order, they do not affect o and thus there are B; ;. possibilities to choose o.
Besides, if n > k — 1, then 1 can be in the (k — 1)th position, and in this
case, since 7 begins with the pattern (k—1)(k—2)...1k and 7 is decreasing,
it must be that the kth letter of 7 is (n + 1) and there are (7_1) ways to

k—2
choose the letters of ¢ and then write them in decreasing order. Thus,

n n—1
By, = Z (Z->Bi,k + (k 3 2)-

i>0
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Multiplying both sides of the equality with " /n! and summing over n,
we get the differential equation

d o (k=1)(k=2)...1k (k=1)(k=2)...1k g n— 1\ z"
dx dz D12 (z) = By 53 e +§ k—9)

with the initial condition E(k 1)(k 2)-- k(0) = 0. If F(z) denotes the last
term, then it is easy to see that F'(z) = %ew, and thus

z tk_2
F(x) =/0 met dt.

Now, the solution to the equation above is given by

(11)

Bk D021k (g e ¥ et et
" 93 (a:)—e/o F(t // Foo) drdt.

For example, if £ = 2, then (kK —1)(k—2)...1k =12 and (11) gives

T
El%,, =& / e ¢ (et — 1) dt,
0

which is a particular case of Proposition 6, since the number of
n-permutations that avoid the pattern 3 — 21 and begin with the pattern
21 is equal to the number of n-permutations that avoid the pattern 1 — 23
and begin with the pattern 12 by applying the complement. O

Proposition 23. We have
0, ifk>3
G @) = § 2203 (@), k=2
C(z), ifk=1.

Hence
0, ifk>3
Néﬁé)(k_2)“'lk(n) _ Cot—Cog, ifk=2
Ch, ifk=1.

Proof. For the case k = 1, see Proposition 7. If k& > 3, then the statement
is true, since in this case the pattern (k — 1)(k — 2)...1k does not avoid
2-—-13.

Suppose now that k = 2. Using the reverse, we see that beginning with
the pattern 12 and avoiding 2 — 13 is equivalent to ending with the pattern
21 and avoiding 31 — 2, which by [Claes, Lemma 2] is equivalent to ending
with the pattern 21 and avoiding the pattern 3 — 1 — 2.

Let m# = «'17” be an n-permutation avoiding 3 — 1 — 2 and ending with
the pattern 21. Obviously, #’ and 7" avoid 3 — 1 — 2 and each letter of
7' is less than any letter of ", since otherwise we have an occurrence of
3—1-2involving the letter 1. Also, 7" ends with the pattern 21 or |7"| = 1.
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So, using the generating function for the number of permutations avoiding
3 —1—2, which is C(z) ([Knuth]), we have

G52 13(7) = 2G52 13(2)C(2) + z(C(z) — 1).
Therefore, using (1), we get the desired result. d

Proposition 24. We have
Gglﬂ:i)(k_m'“lk(x) = zFC?(z).

Hence

“1)(k—2)... Che(b—1), n>k
N2(113P(k ? 1k(n):{ 0, (k= e];se.

Proof. Using the reverse, we see that beginning with the pattern (k—1)(k—
2)...1k and avoiding the pattern 2—31 is equivalent to ending with the pat-
tern k12...(k—1) and avoiding the pattern 13— 2, which, by [Claes, Lemma
2], is equivalent to ending with the pattern k12...(k — 1) and avoiding the
pattern 1 — 3 — 2.

Let 7 = n'nn” be an n-permutation avoiding the pattern 1 — 3 — 2 and
ending with the pattern k12...(k — 1). Obviously, 7’ and 7" avoid the
pattern 1 — 3 — 2 and each letter of 7’ is greater than any letter of 7"/, since
otherwise we have an occurrence of the pattern 1 —3 — 2 involving the letter
n. Also, 7' ends with the pattern k12...(k—1) or " = 12...(k — 1).

Using the reverse operation, the generating function for the number of
permutations ending with the pattern k12...(k — 1) and avoiding 1 -3 —2
is equal to ng_;i)(k*m“'lk(x). In terms of generating functions, the consid-
erations above lead to

Gl (@) = 2 G @)C ) + 2F O ().
Therefore, by (1), we get the desired result. [

Proposition 25. We have

kD2 lk ) { (e (k= 1)) fy thtem"H dt, if k> 2,

3-12 o _
et 1, ifk=1.

Proof. Suppose k > 2. Let B, ;, denote the number of n-permutations that
avoid the pattern 3 — 12 and begin with a decreasing subword of length
k. Let m = o(n + 1)7 be such a permutation of length n + 1. Obviously,
the letters of 7 must be in decreasing order since otherwise we have an
occurrence of 3 — 12 in 7 starting from the letter (n+1). If |o| = ¢ then
we can choose the letters of ¢ in (7;) ways. Since the letters of 7 are in
decreasing order, they do not affect 0 and thus there are B;; possibilities
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to choose o. Also, if |o| = k — 1 and the letters of ¢ are in decreasing order,
we get (,",) additional ways to choose . Thus

n n
Bn+1,k=2(.)3i,k+< )
o \i k-1

This recurrence relation is identical to the one given in the proof of Propo-
sition 4, and we get the desired result using that proof. O

Proposition 26. We have

0, ifk>4
ESDE D ) = 8 (e f(k = 1)) [T thlem 't dt, if k= 2,3,
e, ifk=1.

Proof. If k > 4 then the statement is true, since in this case the pattern
(k—1)(k —2)...1k does not avoid the pattern 3 — 21. In the other cases,
we use the same arguments as we have in the proof of Proposition 25. The
only difference is that instead of decreasing order in 7, we have increasing
order. O

9. CONCLUSIONS

The goal of our paper is to give a complete description for the numbers
of permutations avoiding a pattern of the form z — yz or 2y — z and either
beginning with one of the patterns 12...%k, k(k —1)...1, 23...k1, (k —
1)(k — 2)...1k, or ending with one of the patterns 12...%, k(k —1)...1,
1k(k — 1)...2, k12...(k — 1). This description is given in Sections 5-
8. However, some of our results can be generalized to beginning with a
pattern belonging to T7*" or I'7***, and thus to the ending with a pattern
belonging to A7 or A7*® (see Section 2 for definitions). An example of
such a generalisation is given in Theorem 27 below. This theorem generalizes
Propositions 4 and 25 and can be proved by using the same considerations
as we do in the proofs of these propositions.

Theorem 27. Suppose p1,ps € '™ and p; € Sk(1 —23), p2 € Sp(1 —
32). Thus, the complements C(p1),C(p2) € T7*** and C(p1) € Sp(1 — 23),
C(p2) € Sk(3—12). Then, we have

EP' 55(z) = By 8 (2) = EP? 5, (2) = E5 53 (2) =

(e [(k — 1)) [ thLe="+t dt, if k> 2,
et 1, ifk=1.
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