
Mobile 
Applications 
and Java ME



Overview

• Mobile Platforms
• How they fit together?
• CLDC
• Optional Packages
• MIDP
• MIDlets
• API Examples
• Input, Event, & Error Handling
• UI Design Principles

http://cmer.cis.uoguelph.ca 2



Motivation

• Who doesn’t have some kind of a mobile device (cell 
phone, smartphone, PDA, etc)

• People love their cell phones (inherently personal, 
telecommunication, etc)

http://cmer.cis.uoguelph.ca 3

Source:
ITU adapted from 
researchICTafrica.net



Mobile Devices in Education

• Mobile devices out-ship desktop computers 20 to 1
• For many students, the mobile device is becoming the 

computer (calendar, note taking, etc)
• Today’s mobile devices is the supercomputer of 20 years 

ago
• Students already annoy instructors with their cell 

phones (lovely ring tones, text messaging, etc)

http://cmer.cis.uoguelph.ca 4



Mobile Applications

• Mobile Apps are apps or services that can be pushed to 
a mobile device or downloaded and installed locally

• Classification
• Browser-based: apps/services developed in a markup 

language
• Native: compiled applications (device has a runtime 

environment). Interactive apps such as downloadable 
games. (Our focus)

• Hybrid: the best of both worlds (a browser is needed 
for discovery)

http://cmer.cis.uoguelph.ca 5



Mobile Platforms

• A wide variety of devices supporting different platforms
– BlackBerry
– Palm OS
– Windows Mobile
– Symbian

• Runtime environments & apps
– Browser-based apps (WAP)
– Flash-lite
– Java ME
– Qualcomm’s BREW
– Google’s Android

• Having a choice is good…but not always…
– Device fragmentation

http://cmer.cis.uoguelph.ca 6



The Java Platform

http://cmer.cis.uoguelph.ca 7



Java ME

• Java Platform, Micro Edition (Java ME)

• Formerly known as J2ME Wireless Toolkit

• Purpose:
– Platform for mobile devices
– Work within the restrictions of building applications 

for small devices that have limited memory, display, 
and power.

http://cmer.cis.uoguelph.ca 8



Java ME (Cont.)

• Used as an environment for applications targeted 
towards mobiles and stand-alone devices
– Mobile: cell phones and PDAs
– Stand-alone: Printers

http://cmer.cis.uoguelph.ca 9



Java ME (Cont.)

• Benefits:
– Flexible user interface
– Good security
– Integrated network protocols
– Support for downloadable applications that can be 

networked or stand-alone

http://cmer.cis.uoguelph.ca 10



Java ME (Cont.)

• Java ME comprised of three components
– A Configuration
– A Profile
– A Package (Optional)

http://cmer.cis.uoguelph.ca 11



Java ME (Cont.)

Configuration
• A configuration defines the minimum APIs and VM 

capabilities for a family of devices:
– Similar requirements of memory size and processing 

capabilities
• The minimum APIs that an application developer can 

expect to be available on implementing devices
• May not contain any optional features

http://cmer.cis.uoguelph.ca 12



Java ME (Cont.)

• Defined through the Java Community Process (JCP) -
http://java.sun.com/jcp(www.jcp.org)

• Subject to compatibility tests

• Two types of configurations:
– Connected Limited Device Configuration (CLDC) 
– Connected Device Profile (CDC). 

http://cmer.cis.uoguelph.ca 13



Java ME (Cont.)

Profile
• A profile is a collection of APIs that supplement a 

configuration to provide capabilities for a specific 
vertical market

• Defined through Java Community Process initiative -
www.jcp.org

• Subject to compatibility tests
Package
• An optional set of technology-specific APIs

http://cmer.cis.uoguelph.ca 14



Java ME (Cont.)

• Profiles

http://cmer.cis.uoguelph.ca 15



How Do They Fit Together?

• Profiles are built on top of configurations

http://cmer.cis.uoguelph.ca 16



Configuration - CLDC

• Targeted at devices with:
– 160 to 512 KB of total memory available for Java 

technology
– Limited power (e.g. battery)
– Limited connectivity to a network (wireless)
– Constrained User Interface (small screen)

• It is available for free download
• Reference implementation built using KVM

http://cmer.cis.uoguelph.ca 17



CLDC - KVM

• Stands for Kilo Virtual Machine
• Originated from a research project called Spotless at 

Sun Research Labs
• Implements the classes defined in the CLDC 

specification + some additional UI classes

• Note: the UI classes are not part of the CLDC and can be 
removed at any time

http://cmer.cis.uoguelph.ca 18



CLDC – KVM (Cont.)

• A complete runtime environment for small devices
• Built from the ground up in C
• Small footprint (40 –80 KB)
• Class file verification takes place off-device
• Supports multi-threading
• Supports garbage collection

http://cmer.cis.uoguelph.ca 19



CLDC – KVM Security

• VM level security
– Off-device pre-verification
– Small in-device verification

• Application level security
– No Security Manager
– Sandbox security model:

• Applications run in a closed environment
• Applications can call classes supported by the 

device

http://cmer.cis.uoguelph.ca 20



Optional Packages

• Core MIDP 2.0 functionality is limited. Vendors may 
include optional packages:
– JSR-75: File Connection and PIM APIs
– JSR-82: Bluetooth API
– JSR-120: Mobile Messaging API
– JSR-135: Mobile Media API
– JSR-179: Location API
– Many others…

http://cmer.cis.uoguelph.ca 21



JTWI

• JSR-185: Java Technology for Wireless Industry 
(umbrella specification)

http://cmer.cis.uoguelph.ca 22



MSA

• JSR-248: Mobile Service Architecture

http://cmer.cis.uoguelph.ca 23



CLDC – Wireless Device Stack

http://cmer.cis.uoguelph.ca 24



CLDC - Internals

• The CLDC specification specifies VM features required 
by a CLDC implementation

• Specifies requirements and APIs for
– Input / Output
– Networking

http://cmer.cis.uoguelph.ca 25



CLDC –
Language & VM Compatibility

• Goal:
– Full java language and VM specification compatibility

• Language-level exception:
– No floating point support in CLDC 1.0

• No hardware floating point support
• Manufacturers and developers can include their 

own floating point

http://cmer.cis.uoguelph.ca 26



CLDC VS. J2SE JVM

• Limitations in CLDC supporting JVM:
– No floating point support
– No finalization
– Limited error handling
– No Java Native Interface (JNI)
– No support for reflection
– No thread groups or daemon threads
– No weak references

http://cmer.cis.uoguelph.ca 27



Beyond the CLDC Scope

• Profiles implemented on top of CLDC specify APIs for:
– User Interface support
– Event handling
– Persistent support
– High-level application model

• An example profile is the Mobile Information Device 
Profile (MIDP)

http://cmer.cis.uoguelph.ca 28



CLDC - APIS

• Classes inherited from J2SE v1.3 are in packages:
– java.lang
– java.io
– java.util

• New classes introduced by the CLDC are in package:
– javax.microedition

http://cmer.cis.uoguelph.ca 29



CLDC Libraries: JAVA.LANG.*

• Boolean
• Byte
• Character
• Class
• Integer
• Long
• Math
• Object

• Runnable
• Runtime
• Short
• String
• StringBuffer
• System
• Thread
• Throwable

http://cmer.cis.uoguelph.ca 30



CLDC Libraries: JAVA.IO.*

• ByteArrayInputStream
• ByteArrayOutputStream
• DataInput
• DataOutput
• DataInputStream
• DataOutputStream
• InputStream

• OutputStream
• InputStreamReader
• OutputStreamWriter
• PrintStream
• Reader
• Writer

http://cmer.cis.uoguelph.ca 31



CLDC Libraries: JAVA.UTIL.*

• Calendar
• Date
• Enumeration
• Hashtable
• Random
• Stack
• TimeZone
• Vector

http://cmer.cis.uoguelph.ca 32



CLDC - MIDP

• Targets mobile two-way communication devices 
implementing the CLDC

• It addresses:
– Display toolkit (user input)
– Persistent data storage
– HTTP based networking using CLDC generic 

connection framework
• Available for free download

http://cmer.cis.uoguelph.ca 33



CLDC – MIDP Internals

• Goal:
– MIDP implementation must fit in small footprint 

(128KB ROM)
– Must run with limited heap size (32-200KB RAM)

• To be implemented by device manufacturers, operators, 
or developers

http://cmer.cis.uoguelph.ca 34



MIDP - APIS

• The MIDP specifies APIs for:
– User Interface
– Networking (based on CLDC)
– Persistent Storage
– Timers

http://cmer.cis.uoguelph.ca 35



MIDP –
User Interface (UI)

• Not a subset of AWT or Swing because:
– AWT is designed for desktop computers
– Assumes certain user interaction models (pointing 

device such as a mouse)
– Window management (resizing overlapping windows). 

This is impractical for cell phones
• Consists of high-level and low-level APIs

http://cmer.cis.uoguelph.ca 36



MIDP - UI APIS

• High-level API
– Applications should be runnable and usable in all 

MIDP devices
– No direct access to native device features

• Low-level API
– Provide access to native drawing primitives, device 

key events, native input devices
– Allows developers to choose to compromise 

portability for user experience

http://cmer.cis.uoguelph.ca 37



MIDP –
UI Programming Model

• The central abstraction is a screen
• Only one screen may be visible at a time
• Three types of screens:

– Predefined screens with complex UI components 
(List, TextBox)

– Generic screens (Formwhere you can add text, 
images, etc)

– Screens used with low-level API (Canvas)

http://cmer.cis.uoguelph.ca 38



MIDP – UI and Display

• The Display class is the display manager
• It is instantiated for each active MIDlet
• Provides methods to retrieve information about the 

device’s display capabilities
• A screen is made visible by calling: 

Display’s setCurrent(screen);

http://cmer.cis.uoguelph.ca 39



MIDP – UI Classes

• javax.microedition.lcdui classes:
Alert, AlertType, Canvas, ChoiceGroup, Command, 
DateField, Display, Displayable, Font, Form, Gauge, 
Graphics, Image, ImageItem, Item, List, Screen, 
StringItem, TextBox, TextField, Ticker

• javax.microedition.lcdui interfaces:
Choice, CommandListener, ItemStateListener

http://cmer.cis.uoguelph.ca 40



MIDP UI Class Diagram

• Major classes and interfaces:

http://cmer.cis.uoguelph.ca 41



MIDP - MIDlets

• A MIDlet consists of a class that extends the MIDletclass
and other classes as needed

• To handle events it must implement the 
CommandListenerinterface

public class MyMIDlet extends MIDlet implements 
CommandListener {

}

http://cmer.cis.uoguelph.ca 42



MIDP Application Lifecycle

• MIDlets move from state to state in the lifecycle:
– Start: acquire resources and start executing
– Pause: release resources and wait
– Destroyed: release all resources and end all activities

http://cmer.cis.uoguelph.ca 43



MIDLET - Packaging

• Two or mode MIDlets form a MIDlet suite
• One or more MIDlets may be packaged in a single JAR 

file that includes:
– A manifest describing the contents
– Java classes for the MIDlet(s)
– Resource file(s) used by the MIDlet(s)

• Each jar file is accompanied by a Java Application 
Descriptor (JAD) file

http://cmer.cis.uoguelph.ca 44



MIDLET – Packaging (Cont.)

• Java Application Descriptor (JAD) file provides info:
– Configuration properties
– Pre-download properties

• Size, version, storage requirements

http://cmer.cis.uoguelph.ca 45



MIDLET - Example

import javax.microedition.midlet.MIDlet;
import javax.microedition.lcdui.*;

public class FirstMIDletextends MIDlet {
Display display= null;
TextBox tb = null;
public FirstMIDlet() {

display = Display.getDisplay(this);
}

http://cmer.cis.uoguelph.ca 46



MIDLET – Example (Cont.)

public void startApp() {
tb= new TextBox("FirstMIDlet", "Welcome to

MIDP Programming", 40, 0);
display.setCurrent(tb);

}
public void pauseApp() { }
public void destroyApp(boolean unconditional) { }
}

}

http://cmer.cis.uoguelph.ca 47



MIDLET – Example (Cont.)

• Compile (javac)
• Preverify (off device preverification)
• Create a JAR file: first.jar
• Create a JAD file: first.jad

– MIDlet-Name: MyFirst
– MIDlet-Version: 1.0.0 
– MIDlet-Vendor: Sun Microsystems, Inc. 
– MIDlet-Description: My First MIDlet
– MIDlet-Info-URL: http://java.sun.com/javame/ 
– MIDlet-Jar-URL: first.jar
– MIDlet-Jar-Size: 1063 
– MicroEdition-Profile: MIDP-1.0 
– MicroEdition-Configuration: CLDC-1.0 
– MIDlet-1: MyFirst,, FirstMIDlet

http://cmer.cis.uoguelph.ca 48



MIDLET – Example: Testing

• midp –Xdescriptor first.jad

http://cmer.cis.uoguelph.ca 49



MIDlet – Example: Deploying

• Local: USB, Bluetooth
• Web:

– To deploy a MIDlet on a web server, you need to add a 
new MIME type:

text/vnd.sun.j2me.app-descriptor jad
application/java-archive jar

– Create an HTML file with link to the .jar file
– Use the following command to run:

emulator –Xdescriptor:<JAD file>

• Push registry: incoming network connections can launch 
specific MIDlets

http://cmer.cis.uoguelph.ca 50



Simplifying the 
Development Effort

• Sun Java Wireless Toolkit for CLDC

http://cmer.cis.uoguelph.ca 51



Low-Level API Examples

• Canvas:
public class MyCanvas extends Canvas {

public void paint(Graphics g) {
g.setColor(255, 0, 0);
g.fillRect(0, 0, getWidth(), getHeight());
g.setColor(255, 255, 255);
g.drawString("Hello World!", 0, 0, g.TOP | g.LEFT);

}
}

http://cmer.cis.uoguelph.ca 52



Low-Level API Examples (Cont.)

• Instantiate and display MyCanvas
public class MyMidlet extends MIDlet {

public MyMidlet() { // constructor
}
public void startApp() {

Canvas canvas = new MyCanvas();
Display display = Display.getDisplay(this);
display.setCurrent(canvas);

}
// pauseApp() and destroyApp()
}

http://cmer.cis.uoguelph.ca 53



High-Level API Examples

• List:
Display display = Display.getDisplay(this);
List menu = new List(“Method of payment”, 

Choice.EXCLUSIVE);
menu.append(“Visa”);
menu.append(“MasterCard”);
menu.append(“Amex”);
display.setCurrent(menu);

http://cmer.cis.uoguelph.ca 54



High-Level API 
Examples (Cont.)

• Form (Date/Time info):
DateField date = new DateField(“Today’s
date”, DateField.TIME);
Form form = new Form(“Date Info”);
form.append(date);
display.setCurrent(form);

http://cmer.cis.uoguelph.ca 55



Input Handling

• High-Level API input is handled using abstract 
commands
– No direct access to soft buttons
– Commands are mapped to appropriate soft buttons or 

menu items

http://cmer.cis.uoguelph.ca 56



Input Handling: Example

• TextBox screen with commands:
Display display = Display.getDisplay(this);
TextBox tb= new TextBox(“MIDP”, “Welcome to MIDP 

Programming”, 40, TextField.ANY);
Command exit = new Command(“Exit”, Command.SCREEN, 1);
Command info = new Command(“Info”, Command.SCREEN, 2);
Command buy = new Command(“Buy”, Command.SCREEN, 2);
tb.addCommand(exit);
tb.addComment(info);
tb.addCommand(buy);
display.setCurrent(tb);

http://cmer.cis.uoguelph.ca 57



Event Handling: High-Level

• High-level Events:
– Based on a listener model
– Screen objects can have listeners for commands
– For an object to be a listener, it must implement 

the CommandListenerinterface
– This interface has one method: commandAction

http://cmer.cis.uoguelph.ca 58



Event Handling: 
High-Level Example

• MIDlet implements CommandListener
public class MyMIDletextends MIDlet implements 

CommandListener{
Command exitCommand= new Command(…); // other stmts
public void commandAction(Command c, Displayable s) { 

if (c == exitCommand) { 
destroyApp(false); 
notifyDestroyed(); 

} 
}

}

http://cmer.cis.uoguelph.ca 59



Event Handling: 
High-Level Example (Cont.)

• Handling List events:
public void commandAction(Commandc, Displayable d) {

if (c == exitCommand) { ..
} else {
List down = (List)display.getCurrent();
switch(down.getSelectedIndex()) {
case 0: testTextBox();break;
case 1: testList();break;
case 2: testAlert();break;
case 3: testDate();break;
case 4: testForm();break;

}

http://cmer.cis.uoguelph.ca 60



Event Handling: Low-Level

• Low-level Events:
– Low-level API gives developers access to key press 

events
– Key events are reported with respect to key codes
– MIDP defines key codes: KEY_NUM0 .. KEY_NUM9, 

KEY_STAR, KEY_POUND

http://cmer.cis.uoguelph.ca 61



Event Handling: 
Low-Level Example

• Low-level events
protected void keyPressed(intkeyCode) {

if (keyCode> 0) {
System.out.println("keyPressed
“ +((char)keyCode));

} else {
System.out.println("keyPressedaction
“+getGameAction(keyCode));

}
}

http://cmer.cis.uoguelph.ca 62



Error Handling

• Important to handle errors smoothly to provide a great 
user experience

• Users should be provided clear information on how to 
correct an issue if possible in a error message

• If an uncorrectable exception is possible the user should 
be given an ability to log the error information to report 
to developer

• All possible exceptions should be handled in some 
manner in an application

http://cmer.cis.uoguelph.ca 63



MIDP UI Design Principles

• Make the UI simple and easy to use
• Use the high-level API (portability)
• If you need to use low-level API, keep to the platform-

independent part
• MIDlets should not depend on any specific screen size
• Entering data is tedious, so provide a list of choices to 

select from

http://cmer.cis.uoguelph.ca 64


