Exercises 127

3.8 Modify the date server shown in Figure 3.26 so that it delivers random
fortunes rather than the current date. Allow the fortunes to contain
multiple lines. The date client shown in Figure 3.27 can be used to read
the multi-line fortunes returned by the fortune server.

An echo server is a server that echoes back whatever it receives from a
client. For example, if a client sends the server the string Hello there! the
server will respond with the exact data it received from the client—that
is, Hello there!

Write an echo server using the Java networking API described in
Section 3.6.1. This server will wait for a client connection using the
accept () method. When a client connection is received, the server will
loop, performing the following steps:

* Read data from the socket into a buffer.

¢ Write the contents of the buffer back to the client.

The server will break out of the loop only when it has determined that
the client has closed the connection.

The date server is shown in Figure 3.26 uses the class
java.io.BufferedReader. BufferedReader extends the class
java.io.Reader, whichisused forreading character streams. However,
the echo server cannot guarantee that it will read characters from clients;
it may receive binary data as well. The class java.io.InputStream
deals with data at the byte level rather than the character level. Thus,
this echo server must use an object that extends java.io.InputStream.
The read() method in the java.io.InputStream class returns —1
when the client has closed its end of the socket connection.

Write an RMI application in which the server delivers random one-line
fortunes. The interface for the remote object appears as

import java.rmi.*;

public interface RemoteFortune extends Remote

{

public abstract String getFortune()
throws RemoteException;

}

A client invoking the getFortune() method will receive a random
one-line fortune from the remote object.

Project—Creating a Shell Interface

This project consists of modifying a Java program so that it serves as a shell
interface that accepts user commands and then executes each command in a
separate process external to the Java virtual machine. A shell interface provides
the user with a prompt, after which the user enters the next command. The
example below illustrates the prompt jsh> and the user’s next command: cat

128 Chapter 3 Processes

import java.io.x;

an
public class SimpleShell ch
{
public static void main(String[] args) throws java.io.IOExceptig} Cr
String commandLine; :
BufferedReader console = new BufferedReader v Th
(new InputStreamReader (System.in)); SO
the
// we break out with <control><C> pa
while (true) { ust
// read what the user entered
System.out.print("jsh>");
commandLine = console.readlLine();
the
// if the user entered a return, just loop again pat
if (commandLine.equals("")) do:
continue;
/** The steps are: _
(1) parse the input to obtain the command and any parameters Aj
(2) create a ProcessBuilder object —
(3) start the process sec
(4) obtain the output stream nu
(5) output the contents returned by the command */ acc
}
1 Prc¢
} pro
Figure 3.35 Outline of simple shell. fur
Ch
Prog.java. This command displays the file Prog. java on the terminal using The
the UNIX cat command. d_1re
dire
jsh> cat Prog.java all'o
this
Perhaps the easiest technique for implementing a shell interface is to have ent
the program first read what the user enters on the command line (here, cat con
Prog.java) and then create a separate external process that performs the all t
command. We create the separate process using the ProcessBuilder () object,
as illustrated in Figure 3.13. In our example, this separate process is external to the
the JVM and begins execution when its run () method is invoked.
Simple Shell
Wh
A Java program that provides the basic operations of a command-line shell will
is supplied in Figure 3.35. The main () method presents the prompt jsh> (for act
java shell) and waits to read input from the user. The program is terminated Zulfos
efc

when the user enters <Control><C>.

Exercises 129

This project is organized into three parts: (1) creating the external process
and executing the command in that process, (2) modifying the shell to allow
changing directories, and (3) adding a history feature.

Creating an External Process

The first part of this project is to modify the main() method in Figure 3.35
so that an external process is created and executes the command specified by
the user. Initially, the command must be parsed into separate parameters and
passed to the constructor for the ProcessBuilder object. For example, if the
user enters the command

jsh> cat Prog.java

the parameters are (1) cat and (2) Prog. java, and these parameters must be
passed to the ProcessBuilder constructor. Perhaps the easiest strategy for
doing this is to use the constructor with the following signature:

public ProcessBuilder (List<String> command)

A java.util.ArrayList-—whichimplements the java.util.List interface
—can be used in this instance, where the first element of the list is cat and the
second element is Prog. java. This is an especially useful strategy because the
number of arguments passed to UNIX commands may vary (the cat command
accepts one argument; the cp command accepts two, and so forth).

If the user enters an invalid command, the start() method in the
ProcessBuilder class throws an java.io.IOException. If this occurs, your
program should output an appropriate error message and resume waiting for
further command from the user.

Changing Directories

The next task is to modify the program in Figure 3.35 so that it changes
directories. In UNIX systems, we encounter the concept of the current working
directory, which is simply the directory you are currently in. The cd command
allows a user to change current directories. Your shell interface must support
this command. For example, if the current directory is /usr/tom and the user
enters cd music, the current directory becomes /usr/tom/music. Subsequent
commands relate to this current directory. For example, entering 1s will output
all the files in /usr/tom/music.

The ProcessBuilder class provides the following method for changing
the working directory:

public ProcessBuilder directory(File directory)

When the start () method of a subsequent process is invoked, the new process
will use this as the current working directory. For example, if one process with
a current working directory of /usr/tom invokes the command cd music,
subsequent processes must set their working directories to /usr/tom/music
before beginning execution. It is important to note that your program must

130

Chapter 3 Processes

first make sure the new path being specified is a valid directory. If not, your
program should output an appropriate error message.

If the user enters the command cd, change the current working directory
to the user’s home directory. The home directory for the current user can be
obtained by invoking the static getProperty() method in the System class as
follows:

System.getProperty("user.dir");

Adding a History Feature

Many UNIX shells provide a history feature that allows users to see the history
of commands they have entered and to rerun a command from that history.
The history includes all commands that have been entered by the user since
the shell was invoked. For example, if the user entered the hist ory command
and saw as output:

0 pwd
11s -1
2 cat Prog.java

the history would list pwd as the first command entered, 1s -1 as the second
command, and so on.

Modify your shell program so that commands are entered into a history:.
(Hint: The java.util.ArrayList provides a useful data structure for storing
these commands.)

Your program must allow users to rerun commands from their history by
supporting the following two techniques:

1. When the user enters !!, run the previous command in the history. If
there is no previous command, output an appropriate error message.

2. When the user enters !<integer value i >, run the ith command in
the history. For example, entering !4 would re-run the 4th command in
the command history. Make sure you perform proper error checking to
ensure that the integer value is a valid number in the command history.

Bibliographical Notes

Interprocess communication in the RC 4000 system was discussed by Brinch-
Hansen [1970]. Schlichting and Schneider [1982] discussed asynchronous
message-passing primitives. The IPC facility implemented at the user level
was described by Bershad et al. [1990].

Details of interprocess communication in UNIX systems were presented
by Gray [1997]. Barrera [1991] and Vahalia [1996] described interprocess
communication in the Mach system. Solomon and Russinovich {2000] and
Stevens [1999] outlined interprocess communication in Windows 2000 and
UNIX respectively.

