
Memory Management
Main memory

Virtual memory

Main memory

Background (1)

 Processes need to share memory

 Instruction execution cycle leads to a stream
of memory addresses

 Basic hardware
◦ CPU can only access data in registers and main

memory
 Accessing registers is fast

 Accessing main memory takes a number of processor
cycles

 Cache: a fast memory between registers and main
memory

◦ Memory protection is needed for correct
operation

Background (2)

 Privileged instructions to load the base

and limit registers

Background (3)

 Address binding

◦ Compile time

 Absolute code

 Example: MS-DOS .COM programs

◦ Load time

 Relocatable code

◦ Execution time

 Most OS use this

Background (4)

 Logical vs. physical address space

◦ Logical address: CPU generated

◦ Physical address: Memory unit (memory address register)

◦ In compile and load time binding logical address = physical
address

◦ In execution time binding logical address ≠ physical – virtual
address
 Memory management unit (MMU): mapping from virtual to physical

addresses

 Programs only see virtual addresses

Background (5)

 Dynamic loading

◦ Aim: obtain better memory space utilisation

◦ Routines are not loaded until they are called
 Routines kept in disk in relocatable load format

◦ + unused routines are never loaded

◦ Not the responsibility of the OS

 Dynamic linking and shared libraries

◦ Similar to dynamic loading
 Some OS only support static linking

◦ Often used for system libraries – shared libraries
 Include a stub in the image for each library routine reference

 Can be extended to library updates (e.g. patches) – version information
is included to ensure compatibility

◦ Because of memory protection dynamic linking needs OS
support

Swapping (1)

 Processes can be temporarily
swapped out of memory to a
backing store

◦ roll out, roll in

 Type of binding determines
memory location to be used

 Backing store is commonly a fast
disk

◦ Chunk of disk separate from the file
system

Swapping (2)

 Processes in main memory or backing store are considered
ready for execution

◦ Swapping triggered by processor allocation – high context
switch time

◦ Main part of the swap time is transfer time – amount of memory
to be swapped

◦ It is essential for the OS to the exact amount of memory used –
request and release memory system calls

 Care is needed for processes waiting on I/O – I/O buffers

◦ Never swap or use OS I/O buffers

 Standard swapping is not very common, but modified
versions are

◦ UNIX – start when above a memory usage threshold

◦ MS Windows 3.1 – user controlled swapping

Contiguous Memory Allocation (1)

 Two memory partitions
◦ Resident OS

 Low or high memory ? – interrupt vector

◦ User processes
 Each process in a contiguous section of memory

 Memory mapping & protection
◦ MMU maps logical addresses dynamically

◦ Relocation and limit registers
 Loading in context switch

◦ Change dynamically OS size
 I/O buffers & transient code

Contiguous Memory Allocation (2)

 Partitions: fixed-size chunks of memory
◦ One partition for each process

 Variable partition scheme
◦ Hole: a contiguous block of available memory

◦ Dynamic storage allocation problem

 First fit, Best fit, Worst fit

 First and best better than worst fit

 First is faster

OS

process 5

process 8

process 2

OS

process 5

process 2

OS

process 5

process 2

OS

process 5

process 9

process 2

process 9

process 10

Contiguous Memory Allocation (3)

 First and Best fit suffer from external
fragmentation
◦ Enough total space to satisfy a request, but not

contiguous

◦ Where is the leftover piece?

◦ 50 percent rule: if N allocated blocks, another 0.5N
blocks lost to fragmentation

 Internal memory fragmentation (within block)
◦ Fixed size blocks to avoid overheads of tracking

 Compaction – solution to external fragmentation
◦ Depends on whether relocation is static or dynamic

◦ Cost?

Paging (1)

 Non-contiguous memory allocation

 Problem: how to fit variable size memory chunks
onto the backing store?
◦ Backing store fragmentation problem with compaction not

an option

 Frames: fixed size physical memory blocks

 Pages: fixed size logical memory blocks

 Physical and logical memory and backing store blocks
of same size
◦ Power of 2 (512 bytes – 16Mb per page)

◦ For given logical address space 2m and page size 2n

page number page offset

p d

m - n n

Paging (2)

Paging (3)

32-byte memory and 4-byte pages

Paging (4)
 Paging is a form of dynamic relocation

 Paging does not suffer from external
fragmentation, but does suffer from
internal one

◦ N+1 frames for the extra byte

◦ Half a page on average

 What size of pages?

◦ Fragmentation – small

◦ Management overhead & efficiency – large

◦ Variable on-the-fly page size support

 Separate user and actual view of
memory

◦ Address translation hardware

 Frame table

 OS maintain a process page table
Before allocation After allocation

Paging (5)

 Page table implementation

◦ Set of dedicated registers
 Efficiency is a major

consideration

 Dispatcher load page table with
privileged instructions

◦ In main memory with a page
table base register (PTBR)
 More efficient context switching,

but less efficient memory access
(2 accesses per time)

◦ Translation look-aside buffer
(TLB)
 Key, value – entries

 Fast access, but expensive
hardware

 Small size

 TLB miss (replacement), wired
down entries

 Address space identifiers (ASIDs)

to avoid flushing

 Hit ratio & effective-access time

Paging (6)

 Protection

◦ Protection bit (read-

write, read-only) for

each frame kept in

page table

◦ Valid/invalid bit

◦ Page table length

register (PTLR)

 Shared pages

◦ Reentrant code: non-

self-modifying code

Structure of the Page Table (1)

 Hierarchical paging

◦ Two-level page table

◦ Forward-mapped page table

page number page offset

pi p2 d

12 10 10

Structure of the Page Table (2)

Structure of the Page Table (3)

 Hashed page table

◦ Address space > 32 bits

◦ Virtual page number, value of mapped page frame, pointer to
next element in the linked list

◦ Clustered page tables

 Useful for sparse address spaces

Structure of the Page Table (4)

 Inverted page tables
◦ One entry for each real page of memory

◦ Entry: virtual address of the page stored in that real memory
location, with information about the process owning it

◦ Decreases memory needed to store each page table, but
increases time needed to search the table when a page
reference occurs

◦ Use hash table to limit the search to one — or at most a few
— page-table entries

Segmentation (1)

 Memory-management scheme that
supports user view of memory

◦ Programs organised in segments of
variable lengths

◦ Address: segment no, offset

◦ Compiler creates segments

 Segment table: mapping two
dimensional user defined addresses into
one dimensional physical addresses

◦ Segment base and segment limit

◦ Segment-table base register (STBR)
points to the segment table’s location in
memory

◦ Segment-table length register (STLR)
indicates number of segments used by a
program

 Protection and sharing at segment level

Segmentation (2)

For contemplation (1)
 Explain the difference between internal and external fragmentation.

 Given five memory partitions of 100 KB, 500 KB, 200 KB, 300 KB, and 600
KB (in order), how would each of the first-fit, best-fit, and worst-fit
algorithms place processes of 212 KB, 417 KB, 112 KB, and 426 KB (in
order)? Which algorithm makes the most efficient use of memory?

 Most systems allow programs to allocate more memory to its address
space during execution. Data allocated in the heap segments of programs
are an example of such allocated memory. What is required to support
dynamic memory allocation in the following schemes:

◦ contiguous-memory allocation

◦ pure segmentation

◦ pure paging

 Compare the main memory organization schemes of contiguous-memory
allocation, pure segmentation, and pure paging with respect to the
following issues:

◦ external fragmentation

◦ internal fragmentation

◦ ability to share code across processes

For contemplation (2)
 Compare paging with segmentation with respect to the amount of

memory required by the address translation structures in order to convert
virtual addresses to physical addresses.

 Consider a paging system with the page table stored in memory.

◦ If a memory reference takes 200 nanoseconds, how long does a paged memory
reference take?

◦ If we add associative registers, and 75 percent of all page-table references are found in
the associative registers, what is the effective memory reference time? (Assume that
finding a page-table entry in the associative registers takes zero time if the entry is
there.)

 Why are segmentation and paging sometimes combined into one scheme?

 Compare the segmented paging scheme with the hashed page tables
scheme for handling large address spaces. Under what circumstances is
one scheme preferable to the other?

 Consider a system in which a program can be separated into two parts:
code and data. The CPU knows whether it wants an instruction
(instruction fetch) or data (data fetch or store). Therefore, two base–limit
register pairs are provided: one for instructions and one for data. The
instruction base–limit register pair is automatically read-only, so programs
can be shared among different users. Discuss the advantages and
disadvantages of this scheme.

For contemplation (3)

 Consider the following segment table:

Segment Base Length

0 219 600

1 2300 14

2 90 100

3 1327 580

4 1952 96

 What are the physical addresses for the following logical addresses?

◦ 0,430

◦ 1,10

◦ 2,500

◦ 3,400

◦ 4,112

For contemplation (4)

 Assuming a 1KB page size, what are the page numbers and offsets
of the following address references (provided as decimal numbers)?

◦ 2375

◦ 19366

◦ 30000

◦ 256

◦ 16385

 Consider a logical space of 32 pages with 1,024 words per page,
mapped onto a physical memory of 16 frames.

◦ How many bits are required in the logical address?

◦ How many bits are required in the physical address?

 Consider a computer system with a 32-bit logical address and 4-KB
page size. The system supports up to 512MB of physical memory.
How many entries are there in each of the following?

◦ A conventional single-level page table

◦ An inverted page table

