
Threads

Overview (1)

 Thread: basic unit of CPU utilisation

◦ Comprises of thread ID, program counter, register set and a
stack

◦ Threads within a process share: code and data section, OS
resources (open files and signals)

◦ Multithreaded applications & OS

Overview (2)

 Benefits

◦ Responsiveness

◦ Resource sharing

◦ Economy (creation and context switch, up to
30 time difference)

◦ Utilisation of multiprocessor architectures

Overview (3)

 Multi-core programming challenges
◦ Dividing activities

◦ Balance

◦ Data splitting

◦ Data dependency

◦ Testing and debugging

Multithreading Models

 User versus kernel threads
◦ Many-to-one: thread management in user space – efficient, whole process

blocks in blocking system calls, unable to exploit multiprocessors
 Solaris Green threads & GNU Portable threads

◦ One-to-one: allows more concurrency, cost of creating both threads and
limit on threads
 Linux & Windows

◦ Many-to-many: multiplexing of user threads, application or machine specific
allocation, any number of user threads with more concurrency
 Windows with ThreadFiber package
 Two-level model – IRIX, HP-UX, Tru64 Unix, Solaris (before 9)

Thread Libraries

 Thread library: an API for creating and

managing threads

◦ User space versus kernel space

◦ Local function call versus kernel system call

◦ POSIX Pthreds (either), Win32 (kernel), Java

(implemented using the thread library of the

host system)

Java Threads (1)

 All programs have at least one thread

 Thread creation
◦ Extend the Thread class

◦ Implementing the Runnable interface

◦ Creating a thread object does not create a thread,
calling the start() method does

◦ Data sharing through passing of references to the
shared object

◦ Daemon and non daemon threads – setDaemon()

Java Threads (2)
class Sum {

private int sum;

public int getSum(){

return sum;

}

public void setSum(int sum) {

this.sum = sum;

}

}

Java Threads (3)

Java Threads (4)

 JVM and host OS

◦ The specification does not indicate how

threads are to be mapped

 Windows XP (one-to-one model) maps each Java

thread to a kernel thread

 Solaris initially used the many-to-one model (Green

threads), later the one-to-one model

◦ Java thread library relates to host OS thread

library

Java Threads (5)

isAlive()

Java Threads (6)

Java Threads (7)

Threading Issues (1)

 fork() and exec()

◦ Are the all threads or just the calling thread

duplicated? – either

◦ exec() replaces the entire process including all

threads

◦ If exec() is to be called then only replicate the

calling thread

Threading Issues (2)

 Cancellation: terminating a thread before

it has finished

 Two general approaches:

◦ Asynchronous cancellation terminates the

target thread immediately

 stop() method, but deprecated

◦ Deferred cancellation allows the target thread

to periodically check if it should be cancelled

 I/O but nio package

Threading Issues (3)

Threading Issues (4)

 Signal handling
◦ UNIX - notify process that an event occurred

 Synchronous (e.g. illegal memory access, division by 0) – delivered to
the offending process

 Asynchronous (e.g. <control><C>, timer expiration) – sent to
another process

◦ Every signal has a default signal handler (run by the kernel) that may
be overridden by a user-defined signal handler

◦ Multithreading option:
 Deliver to the thread the signal applies

 Deliver to every thread of the process

 Deliver to certain threads of the process

 Assign a thread to receive all signals for the process

 Blocking signals

 Only one thread receives

◦ Windows – signal emulation with asynchronous procedure calls
(APCs) (associated to particular threads)

Threading Issues (5)

 Create a number of threads in a pool

where they await work

 Advantages:

◦ Usually slightly faster to service a request

with an existing thread than create a new

thread

◦ Allows the number of threads in the

application(s) to be bound to the size of the

pool

Threading Issues (6)

 Java provides 3 thread pool architectures:

1. Single thread executor - pool of size 1.

2. Fixed thread executor - pool of fixed size.

3. Cached thread pool - pool of unbounded

size

Threading Issues (7)

Threading Issues (8)

 Thread specific data

 Scheduler activations

◦ Many-to-many and two-level
models require
communication to maintain
the appropriate number of
kernel threads allocated to
the application

◦ Scheduler activations provide
upcalls - a communication
mechanism from the kernel to
the thread library

◦ This communication allows an
application to maintain the
correct number kernel
threads

Linux threads

◦ Does not distinguish between process and

threads – tasks

 Unique kernel data structure for each task that

instead of storing data contains pointers to other

data structures

◦ Thread creation: clone()

 No flags – similar to fork()

For contemplation (1)

 Describe the actions taken by a thread library to context

switch between user-level threads.

 Under what circumstances does a multithreaded solution

using multiple kernel threads provide better performance

than a single-threaded solution on a single-processor system?

 Which of the following components of program state are

shared across threads in a multithreaded process?

◦ Register values

◦ Heap memory

◦ Global variables

◦ Stack memory

 What resources are used when a thread is created? How do

they differ from those used when a process is created?

For contemplation (2)

 The Java API provides several different thread-pool
architectures:
◦ newFixedThreadPool(int)

◦ newCachedThreadPool()

◦ newSingleThreadExecutor()

◦ Discuss the merits of each.

 Linux does not distinguish between processes and threads.
Instead, Linux treats both in the same way, allowing a task to
be more akin to a process or a thread depending on the set
of flags passed to the clone() system call. However, many
operating systems— such as Windows XP and Solaris—treat
processes and threads differently. Typically, such systems use a
notation wherein the data structure for a process contains
pointers to the separate threads belonging to the process.
Contrast these two approaches for modelling processes and
threads within the kernel.

For contemplation (3)

 Consider a multiprocessor system and a
multithreaded program written using the many-
to-many threading model. Let the number of user-
level threads in the program be greater than the
number of processors in the system. Discuss the
performance implications of the following
scenarios.
◦ The number of kernel threads allocated to the

program is less than the number of processors.

◦ The number of kernel threads allocated to the
program is equal to the number of processors.

◦ The number of kernel threads allocated to the
program is greater than the number of processors
but less than the number of user level threads.

