module Algebra.Morphism where
open import Relation.Binary
open import Algebra
open import Algebra.FunctionProperties
import Algebra.Properties.Group as GroupP
open import Function
open import Data.Product
open import Level
import Relation.Binary.EqReasoning as EqR
module Definitions {f t ℓ}
(From : Set f) (To : Set t) (_≈_ : Rel To ℓ) where
Morphism : Set _
Morphism = From → To
Homomorphic₀ : Morphism → From → To → Set _
Homomorphic₀ ⟦_⟧ ∙ ∘ = ⟦ ∙ ⟧ ≈ ∘
Homomorphic₁ : Morphism → Fun₁ From → Op₁ To → Set _
Homomorphic₁ ⟦_⟧ ∙_ ∘_ = ∀ x → ⟦ ∙ x ⟧ ≈ (∘ ⟦ x ⟧)
Homomorphic₂ : Morphism → Fun₂ From → Op₂ To → Set _
Homomorphic₂ ⟦_⟧ _∙_ _∘_ =
∀ x y → ⟦ x ∙ y ⟧ ≈ (⟦ x ⟧ ∘ ⟦ y ⟧)
record _-Ring⟶_ {r₁ r₂ r₃ r₄}
(From : Ring r₁ r₂) (To : Ring r₃ r₄) :
Set (r₁ ⊔ r₂ ⊔ r₃ ⊔ r₄) where
private
module F = Ring From
module T = Ring To
open Definitions F.Carrier T.Carrier T._≈_
field
⟦_⟧ : Morphism
⟦⟧-cong : ⟦_⟧ Preserves F._≈_ ⟶ T._≈_
+-homo : Homomorphic₂ ⟦_⟧ F._+_ T._+_
*-homo : Homomorphic₂ ⟦_⟧ F._*_ T._*_
1-homo : Homomorphic₀ ⟦_⟧ F.1# T.1#
open EqR T.setoid
0-homo : Homomorphic₀ ⟦_⟧ F.0# T.0#
0-homo =
GroupP.left-identity-unique T.+-group ⟦ F.0# ⟧ ⟦ F.0# ⟧ (begin
T._+_ ⟦ F.0# ⟧ ⟦ F.0# ⟧ ≈⟨ T.sym (+-homo F.0# F.0#) ⟩
⟦ F._+_ F.0# F.0# ⟧ ≈⟨ ⟦⟧-cong (proj₁ F.+-identity F.0#) ⟩
⟦ F.0# ⟧ ∎)
-‿homo : Homomorphic₁ ⟦_⟧ (F.-_) (T.-_)
-‿homo x =
GroupP.left-inverse-unique T.+-group ⟦ F.-_ x ⟧ ⟦ x ⟧ (begin
T._+_ ⟦ F.-_ x ⟧ ⟦ x ⟧ ≈⟨ T.sym (+-homo (F.-_ x) x) ⟩
⟦ F._+_ (F.-_ x) x ⟧ ≈⟨ ⟦⟧-cong (proj₁ F.-‿inverse x) ⟩
⟦ F.0# ⟧ ≈⟨ 0-homo ⟩
T.0# ∎)