module Constructions (C : Set1)(HomC : C -> C -> Set) (idC : (c : C) -> HomC c c) (_∘C_ : {a b c : C} -> HomC b c -> HomC a b -> HomC a c) where -- Constructions on codes; for now only a non-dependent δ code. -- More constructions can be found in Constructions.Product and -- Constructions.Coproduct. open import Data.Unit import posIR open posIR C HomC idC _∘C_ -------------------------- δ₁ : (F : C -> IR+)(F→ : ∀ {f g} -> (HomC f g) -> Hom (F f) (F g)) -> IR+ δ₁ F F→ = δ ⊤ (λ f → F (f _)) (λ η → F→ (η _)) --------------------------