module Relation.Binary.Product.Pointwise where
open import Data.Product as Prod
open import Data.Sum
open import Data.Unit.Base using (⊤)
open import Function
open import Function.Equality as F using (_⟶_; _⟨$⟩_)
open import Function.Equivalence as Eq
using (Equivalence; _⇔_; module Equivalence)
open import Function.Injection as Inj
using (Injection; _↣_; module Injection)
open import Function.Inverse as Inv
using (Inverse; _↔_; module Inverse)
open import Function.LeftInverse as LeftInv
using (LeftInverse; _↞_; _LeftInverseOf_; module LeftInverse)
open import Function.Related
open import Function.Surjection as Surj
using (Surjection; _↠_; module Surjection)
open import Level
import Relation.Nullary.Decidable as Dec
open import Relation.Nullary.Product
open import Relation.Binary
open import Relation.Binary.PropositionalEquality as P using (_≡_)
module _ {a₁ a₂ ℓ₁ ℓ₂} {A₁ : Set a₁} {A₂ : Set a₂} where
infixr 2 _×-Rel_
_×-Rel_ : Rel A₁ ℓ₁ → Rel A₂ ℓ₂ → Rel (A₁ × A₂) _
_∼₁_ ×-Rel _∼₂_ = (_∼₁_ on proj₁) -×- (_∼₂_ on proj₂)
_×-reflexive_ :
∀ {_≈₁_ _∼₁_ _≈₂_ _∼₂_} →
_≈₁_ ⇒ _∼₁_ → _≈₂_ ⇒ _∼₂_ → (_≈₁_ ×-Rel _≈₂_) ⇒ (_∼₁_ ×-Rel _∼₂_)
refl₁ ×-reflexive refl₂ = λ x≈y →
(refl₁ (proj₁ x≈y) , refl₂ (proj₂ x≈y))
_×-refl_ :
∀ {_∼₁_ _∼₂_} →
Reflexive _∼₁_ → Reflexive _∼₂_ → Reflexive (_∼₁_ ×-Rel _∼₂_)
refl₁ ×-refl refl₂ = (refl₁ , refl₂)
×-irreflexive₁ :
∀ {_≈₁_ _<₁_ _≈₂_ _<₂_} →
Irreflexive _≈₁_ _<₁_ →
Irreflexive (_≈₁_ ×-Rel _≈₂_) (_<₁_ ×-Rel _<₂_)
×-irreflexive₁ ir = λ x≈y x<y → ir (proj₁ x≈y) (proj₁ x<y)
×-irreflexive₂ :
∀ {_≈₁_ _<₁_ _≈₂_ _<₂_} →
Irreflexive _≈₂_ _<₂_ →
Irreflexive (_≈₁_ ×-Rel _≈₂_) (_<₁_ ×-Rel _<₂_)
×-irreflexive₂ ir = λ x≈y x<y → ir (proj₂ x≈y) (proj₂ x<y)
_×-symmetric_ :
∀ {_∼₁_ _∼₂_} →
Symmetric _∼₁_ → Symmetric _∼₂_ → Symmetric (_∼₁_ ×-Rel _∼₂_)
sym₁ ×-symmetric sym₂ = λ x∼y → sym₁ (proj₁ x∼y) , sym₂ (proj₂ x∼y)
_×-transitive_ : ∀ {_∼₁_ _∼₂_} →
Transitive _∼₁_ → Transitive _∼₂_ →
Transitive (_∼₁_ ×-Rel _∼₂_)
trans₁ ×-transitive trans₂ = λ x∼y y∼z →
trans₁ (proj₁ x∼y) (proj₁ y∼z) ,
trans₂ (proj₂ x∼y) (proj₂ y∼z)
_×-antisymmetric_ :
∀ {_≈₁_ _≤₁_ _≈₂_ _≤₂_} →
Antisymmetric _≈₁_ _≤₁_ → Antisymmetric _≈₂_ _≤₂_ →
Antisymmetric (_≈₁_ ×-Rel _≈₂_) (_≤₁_ ×-Rel _≤₂_)
antisym₁ ×-antisymmetric antisym₂ = λ x≤y y≤x →
( antisym₁ (proj₁ x≤y) (proj₁ y≤x)
, antisym₂ (proj₂ x≤y) (proj₂ y≤x) )
×-asymmetric₁ :
∀ {_<₁_ _∼₂_} → Asymmetric _<₁_ → Asymmetric (_<₁_ ×-Rel _∼₂_)
×-asymmetric₁ asym₁ = λ x<y y<x → asym₁ (proj₁ x<y) (proj₁ y<x)
×-asymmetric₂ :
∀ {_∼₁_ _<₂_} → Asymmetric _<₂_ → Asymmetric (_∼₁_ ×-Rel _<₂_)
×-asymmetric₂ asym₂ = λ x<y y<x → asym₂ (proj₂ x<y) (proj₂ y<x)
_×-≈-respects₂_ : ∀ {_≈₁_ _∼₁_ _≈₂_ _∼₂_} →
_∼₁_ Respects₂ _≈₁_ → _∼₂_ Respects₂ _≈₂_ →
(_∼₁_ ×-Rel _∼₂_) Respects₂ (_≈₁_ ×-Rel _≈₂_)
_×-≈-respects₂_
{_≈₁_ = _≈₁_} {_∼₁_ = _∼₁_} {_≈₂_ = _≈₂_} {_∼₂_ = _∼₂_}
resp₁ resp₂ =
(λ {x y z} → resp¹ {x} {y} {z}) ,
(λ {x y z} → resp² {x} {y} {z})
where
_∼_ = _∼₁_ ×-Rel _∼₂_
resp¹ : ∀ {x} → (_∼_ x) Respects (_≈₁_ ×-Rel _≈₂_)
resp¹ y≈y' x∼y = proj₁ resp₁ (proj₁ y≈y') (proj₁ x∼y) ,
proj₁ resp₂ (proj₂ y≈y') (proj₂ x∼y)
resp² : ∀ {y} → (flip _∼_ y) Respects (_≈₁_ ×-Rel _≈₂_)
resp² x≈x' x∼y = proj₂ resp₁ (proj₁ x≈x') (proj₁ x∼y) ,
proj₂ resp₂ (proj₂ x≈x') (proj₂ x∼y)
×-total :
∀ {_∼₁_ _∼₂_} →
Symmetric _∼₁_ → Total _∼₁_ → Total _∼₂_ → Total (_∼₁_ ×-Rel _∼₂_)
×-total {_∼₁_ = _∼₁_} {_∼₂_ = _∼₂_} sym₁ total₁ total₂ = total
where
total : Total (_∼₁_ ×-Rel _∼₂_)
total x y with total₁ (proj₁ x) (proj₁ y)
| total₂ (proj₂ x) (proj₂ y)
... | inj₁ x₁∼y₁ | inj₁ x₂∼y₂ = inj₁ ( x₁∼y₁ , x₂∼y₂)
... | inj₁ x₁∼y₁ | inj₂ y₂∼x₂ = inj₂ (sym₁ x₁∼y₁ , y₂∼x₂)
... | inj₂ y₁∼x₁ | inj₂ y₂∼x₂ = inj₂ ( y₁∼x₁ , y₂∼x₂)
... | inj₂ y₁∼x₁ | inj₁ x₂∼y₂ = inj₁ (sym₁ y₁∼x₁ , x₂∼y₂)
_×-decidable_ :
∀ {_∼₁_ _∼₂_} →
Decidable _∼₁_ → Decidable _∼₂_ → Decidable (_∼₁_ ×-Rel _∼₂_)
dec₁ ×-decidable dec₂ = λ x y →
dec₁ (proj₁ x) (proj₁ y)
×-dec
dec₂ (proj₂ x) (proj₂ y)
_×-isEquivalence_ : ∀ {_≈₁_ _≈₂_} →
IsEquivalence _≈₁_ → IsEquivalence _≈₂_ →
IsEquivalence (_≈₁_ ×-Rel _≈₂_)
_×-isEquivalence_ {_≈₁_ = _≈₁_} {_≈₂_ = _≈₂_} eq₁ eq₂ = record
{ refl = λ {x} →
_×-refl_ {_∼₁_ = _≈₁_} {_∼₂_ = _≈₂_}
(refl eq₁) (refl eq₂) {x}
; sym = λ {x y} →
_×-symmetric_ {_∼₁_ = _≈₁_} {_∼₂_ = _≈₂_}
(sym eq₁) (sym eq₂) {x} {y}
; trans = λ {x y z} →
_×-transitive_ {_∼₁_ = _≈₁_} {_∼₂_ = _≈₂_}
(trans eq₁) (trans eq₂) {x} {y} {z}
}
where open IsEquivalence
_×-isPreorder_ : ∀ {_≈₁_ _∼₁_ _≈₂_ _∼₂_} →
IsPreorder _≈₁_ _∼₁_ → IsPreorder _≈₂_ _∼₂_ →
IsPreorder (_≈₁_ ×-Rel _≈₂_) (_∼₁_ ×-Rel _∼₂_)
_×-isPreorder_ {_∼₁_ = _∼₁_} {_∼₂_ = _∼₂_} pre₁ pre₂ = record
{ isEquivalence = isEquivalence pre₁ ×-isEquivalence
isEquivalence pre₂
; reflexive = λ {x y} →
_×-reflexive_ {_∼₁_ = _∼₁_} {_∼₂_ = _∼₂_}
(reflexive pre₁) (reflexive pre₂)
{x} {y}
; trans = λ {x y z} →
_×-transitive_ {_∼₁_ = _∼₁_} {_∼₂_ = _∼₂_}
(trans pre₁) (trans pre₂)
{x} {y} {z}
}
where open IsPreorder
_×-isDecEquivalence_ :
∀ {_≈₁_ _≈₂_} →
IsDecEquivalence _≈₁_ → IsDecEquivalence _≈₂_ →
IsDecEquivalence (_≈₁_ ×-Rel _≈₂_)
eq₁ ×-isDecEquivalence eq₂ = record
{ isEquivalence = isEquivalence eq₁ ×-isEquivalence
isEquivalence eq₂
; _≟_ = _≟_ eq₁ ×-decidable _≟_ eq₂
}
where open IsDecEquivalence
_×-isPartialOrder_ :
∀ {_≈₁_ _≤₁_ _≈₂_ _≤₂_} →
IsPartialOrder _≈₁_ _≤₁_ → IsPartialOrder _≈₂_ _≤₂_ →
IsPartialOrder (_≈₁_ ×-Rel _≈₂_) (_≤₁_ ×-Rel _≤₂_)
_×-isPartialOrder_ {_≤₁_ = _≤₁_} {_≤₂_ = _≤₂_} po₁ po₂ = record
{ isPreorder = isPreorder po₁ ×-isPreorder isPreorder po₂
; antisym = λ {x y} →
_×-antisymmetric_ {_≤₁_ = _≤₁_} {_≤₂_ = _≤₂_}
(antisym po₁) (antisym po₂)
{x} {y}
}
where open IsPartialOrder
_×-isStrictPartialOrder_ :
∀ {_≈₁_ _<₁_ _≈₂_ _<₂_} →
IsStrictPartialOrder _≈₁_ _<₁_ → IsStrictPartialOrder _≈₂_ _<₂_ →
IsStrictPartialOrder (_≈₁_ ×-Rel _≈₂_) (_<₁_ ×-Rel _<₂_)
_×-isStrictPartialOrder_ {_<₁_ = _<₁_} {_≈₂_ = _≈₂_} {_<₂_ = _<₂_}
spo₁ spo₂ =
record
{ isEquivalence = isEquivalence spo₁ ×-isEquivalence
isEquivalence spo₂
; irrefl = λ {x y} →
×-irreflexive₁ {_<₁_ = _<₁_}
{_≈₂_ = _≈₂_} {_<₂_ = _<₂_}
(irrefl spo₁) {x} {y}
; trans = λ {x y z} →
_×-transitive_ {_∼₁_ = _<₁_} {_∼₂_ = _<₂_}
(trans spo₁) (trans spo₂)
{x} {y} {z}
; <-resp-≈ = <-resp-≈ spo₁ ×-≈-respects₂ <-resp-≈ spo₂
}
where open IsStrictPartialOrder
_×-preorder_ :
∀ {p₁ p₂ p₃ p₄} →
Preorder p₁ p₂ _ → Preorder p₃ p₄ _ → Preorder _ _ _
p₁ ×-preorder p₂ = record
{ isPreorder = isPreorder p₁ ×-isPreorder isPreorder p₂
} where open Preorder
_×-setoid_ :
∀ {s₁ s₂ s₃ s₄} → Setoid s₁ s₂ → Setoid s₃ s₄ → Setoid _ _
s₁ ×-setoid s₂ = record
{ isEquivalence = isEquivalence s₁ ×-isEquivalence isEquivalence s₂
} where open Setoid
_×-decSetoid_ :
∀ {d₁ d₂ d₃ d₄} → DecSetoid d₁ d₂ → DecSetoid d₃ d₄ → DecSetoid _ _
s₁ ×-decSetoid s₂ = record
{ isDecEquivalence = isDecEquivalence s₁ ×-isDecEquivalence
isDecEquivalence s₂
} where open DecSetoid
_×-poset_ :
∀ {p₁ p₂ p₃ p₄} → Poset p₁ p₂ _ → Poset p₃ p₄ _ → Poset _ _ _
s₁ ×-poset s₂ = record
{ isPartialOrder = isPartialOrder s₁ ×-isPartialOrder
isPartialOrder s₂
} where open Poset
_×-strictPartialOrder_ :
∀ {s₁ s₂ s₃ s₄} →
StrictPartialOrder s₁ s₂ _ → StrictPartialOrder s₃ s₄ _ →
StrictPartialOrder _ _ _
s₁ ×-strictPartialOrder s₂ = record
{ isStrictPartialOrder = isStrictPartialOrder s₁
×-isStrictPartialOrder
isStrictPartialOrder s₂
} where open StrictPartialOrder
private
to-cong : ∀ {a b} {A : Set a} {B : Set b} →
(_≡_ ×-Rel _≡_) ⇒ _≡_ {A = A × B}
to-cong {i = (x , y)} {j = (.x , .y)} (P.refl , P.refl) = P.refl
from-cong : ∀ {a b} {A : Set a} {B : Set b} →
_≡_ {A = A × B} ⇒ (_≡_ ×-Rel _≡_)
from-cong P.refl = (P.refl , P.refl)
×-Rel↔≡ : ∀ {a b} {A : Set a} {B : Set b} →
Inverse (P.setoid A ×-setoid P.setoid B) (P.setoid (A × B))
×-Rel↔≡ = record
{ to = record { _⟨$⟩_ = id; cong = to-cong }
; from = record { _⟨$⟩_ = id; cong = from-cong }
; inverse-of = record
{ left-inverse-of = λ _ → (P.refl , P.refl)
; right-inverse-of = λ _ → P.refl
}
}
_×-≟_ : ∀ {a b} {A : Set a} {B : Set b} →
Decidable {A = A} _≡_ → Decidable {A = B} _≡_ →
Decidable {A = A × B} _≡_
(dec₁ ×-≟ dec₂) p₁ p₂ = Dec.map′ to-cong from-cong (p₁ ≟ p₂)
where
open DecSetoid (P.decSetoid dec₁ ×-decSetoid P.decSetoid dec₂)
_×-⟶_ :
∀ {s₁ s₂ s₃ s₄ s₅ s₆ s₇ s₈}
{A : Setoid s₁ s₂} {B : Setoid s₃ s₄}
{C : Setoid s₅ s₆} {D : Setoid s₇ s₈} →
A ⟶ B → C ⟶ D → (A ×-setoid C) ⟶ (B ×-setoid D)
_×-⟶_ {A = A} {B} {C} {D} f g = record
{ _⟨$⟩_ = fg
; cong = fg-cong
}
where
open Setoid (A ×-setoid C) using () renaming (_≈_ to _≈AC_)
open Setoid (B ×-setoid D) using () renaming (_≈_ to _≈BD_)
fg = Prod.map (_⟨$⟩_ f) (_⟨$⟩_ g)
fg-cong : _≈AC_ =[ fg ]⇒ _≈BD_
fg-cong (_∼₁_ , _∼₂_) = (F.cong f _∼₁_ , F.cong g _∼₂_)
_×-equivalence_ :
∀ {a₁ a₂ b₁ b₂ c₁ c₂ d₁ d₂}
{A : Setoid a₁ a₂} {B : Setoid b₁ b₂}
{C : Setoid c₁ c₂} {D : Setoid d₁ d₂} →
Equivalence A B → Equivalence C D →
Equivalence (A ×-setoid C) (B ×-setoid D)
_×-equivalence_ {A = A} {B} {C} {D} A⇔B C⇔D = record
{ to = to A⇔B ×-⟶ to C⇔D
; from = from A⇔B ×-⟶ from C⇔D
} where open Equivalence
_×-⇔_ : ∀ {a b c d} {A : Set a} {B : Set b} {C : Set c} {D : Set d} →
A ⇔ B → C ⇔ D → (A × C) ⇔ (B × D)
_×-⇔_ {A = A} {B} {C} {D} A⇔B C⇔D =
Inverse.equivalence (×-Rel↔≡ {A = B} {B = D}) ⟨∘⟩
(A⇔B ×-equivalence C⇔D) ⟨∘⟩
Eq.sym (Inverse.equivalence (×-Rel↔≡ {A = A} {B = C}))
where open Eq using () renaming (_∘_ to _⟨∘⟩_)
_×-injection_ :
∀ {s₁ s₂ s₃ s₄ s₅ s₆ s₇ s₈}
{A : Setoid s₁ s₂} {B : Setoid s₃ s₄}
{C : Setoid s₅ s₆} {D : Setoid s₇ s₈} →
Injection A B → Injection C D →
Injection (A ×-setoid C) (B ×-setoid D)
A↣B ×-injection C↣D = record
{ to = to A↣B ×-⟶ to C↣D
; injective = Prod.map (injective A↣B) (injective C↣D)
} where open Injection
_×-↣_ : ∀ {a b c d} {A : Set a} {B : Set b} {C : Set c} {D : Set d} →
A ↣ B → C ↣ D → (A × C) ↣ (B × D)
_×-↣_ {A = A} {B} {C} {D} A↣B C↣D =
Inverse.injection (×-Rel↔≡ {A = B} {B = D}) ⟨∘⟩
(A↣B ×-injection C↣D) ⟨∘⟩
Inverse.injection (Inv.sym (×-Rel↔≡ {A = A} {B = C}))
where open Inj using () renaming (_∘_ to _⟨∘⟩_)
_×-left-inverse_ :
∀ {s₁ s₂ s₃ s₄ s₅ s₆ s₇ s₈}
{A : Setoid s₁ s₂} {B : Setoid s₃ s₄}
{C : Setoid s₅ s₆} {D : Setoid s₇ s₈} →
LeftInverse A B → LeftInverse C D →
LeftInverse (A ×-setoid C) (B ×-setoid D)
A↞B ×-left-inverse C↞D = record
{ to = Equivalence.to eq
; from = Equivalence.from eq
; left-inverse-of = left
}
where
open LeftInverse
eq = LeftInverse.equivalence A↞B ×-equivalence
LeftInverse.equivalence C↞D
left : Equivalence.from eq LeftInverseOf Equivalence.to eq
left (x , y) = ( left-inverse-of A↞B x
, left-inverse-of C↞D y
)
_×-↞_ : ∀ {a b c d} {A : Set a} {B : Set b} {C : Set c} {D : Set d} →
A ↞ B → C ↞ D → (A × C) ↞ (B × D)
_×-↞_ {A = A} {B} {C} {D} A↞B C↞D =
Inverse.left-inverse (×-Rel↔≡ {A = B} {B = D}) ⟨∘⟩
(A↞B ×-left-inverse C↞D) ⟨∘⟩
Inverse.left-inverse (Inv.sym (×-Rel↔≡ {A = A} {B = C}))
where open LeftInv using () renaming (_∘_ to _⟨∘⟩_)
_×-surjection_ :
∀ {s₁ s₂ s₃ s₄ s₅ s₆ s₇ s₈}
{A : Setoid s₁ s₂} {B : Setoid s₃ s₄}
{C : Setoid s₅ s₆} {D : Setoid s₇ s₈} →
Surjection A B → Surjection C D →
Surjection (A ×-setoid C) (B ×-setoid D)
A↠B ×-surjection C↠D = record
{ to = LeftInverse.from inv
; surjective = record
{ from = LeftInverse.to inv
; right-inverse-of = LeftInverse.left-inverse-of inv
}
}
where
open Surjection
inv = right-inverse A↠B ×-left-inverse right-inverse C↠D
_×-↠_ : ∀ {a b c d} {A : Set a} {B : Set b} {C : Set c} {D : Set d} →
A ↠ B → C ↠ D → (A × C) ↠ (B × D)
_×-↠_ {A = A} {B} {C} {D} A↠B C↠D =
Inverse.surjection (×-Rel↔≡ {A = B} {B = D}) ⟨∘⟩
(A↠B ×-surjection C↠D) ⟨∘⟩
Inverse.surjection (Inv.sym (×-Rel↔≡ {A = A} {B = C}))
where open Surj using () renaming (_∘_ to _⟨∘⟩_)
_×-inverse_ :
∀ {s₁ s₂ s₃ s₄ s₅ s₆ s₇ s₈}
{A : Setoid s₁ s₂} {B : Setoid s₃ s₄}
{C : Setoid s₅ s₆} {D : Setoid s₇ s₈} →
Inverse A B → Inverse C D → Inverse (A ×-setoid C) (B ×-setoid D)
A↔B ×-inverse C↔D = record
{ to = Surjection.to surj
; from = Surjection.from surj
; inverse-of = record
{ left-inverse-of = LeftInverse.left-inverse-of inv
; right-inverse-of = Surjection.right-inverse-of surj
}
}
where
open Inverse
surj = Inverse.surjection A↔B ×-surjection
Inverse.surjection C↔D
inv = Inverse.left-inverse A↔B ×-left-inverse
Inverse.left-inverse C↔D
_×-↔_ : ∀ {a b c d} {A : Set a} {B : Set b} {C : Set c} {D : Set d} →
A ↔ B → C ↔ D → (A × C) ↔ (B × D)
_×-↔_ {A = A} {B} {C} {D} A↔B C↔D =
×-Rel↔≡ {A = B} {B = D} ⟨∘⟩
(A↔B ×-inverse C↔D) ⟨∘⟩
Inv.sym (×-Rel↔≡ {A = A} {B = C})
where open Inv using () renaming (_∘_ to _⟨∘⟩_)
_×-cong_ : ∀ {k a b c d} {A : Set a} {B : Set b} {C : Set c} {D : Set d} →
A ∼[ k ] B → C ∼[ k ] D → (A × C) ∼[ k ] (B × D)
_×-cong_ {implication} = λ f g → Prod.map f g
_×-cong_ {reverse-implication} = λ f g → lam (Prod.map (app-← f) (app-← g))
_×-cong_ {equivalence} = _×-⇔_
_×-cong_ {injection} = _×-↣_
_×-cong_ {reverse-injection} = λ f g → lam (app-↢ f ×-↣ app-↢ g)
_×-cong_ {left-inverse} = _×-↞_
_×-cong_ {surjection} = _×-↠_
_×-cong_ {bijection} = _×-↔_