module Polynomial.Composition where
open import Prelude.Basic
open import Prelude.Equality
open import Prelude.Fam
open import Prelude.Equivalences
open import Polynomial.IR
open import Polynomial.Monad
_IR-/_ : {D E : Set1 }(M : Poly E) → IR D E → IR D (Info M)
idPN IR-/ R = R
con A IR-/ R = con A , id
sigma S F IR-/ R = (S IR-/ R) Polynomial->>=d (λ p → F p IR-/ R)
pi A f IR-/ R = πIR A (λ a → f a IR-/ R)
_/_ : {D E : Set1} -> (F : Poly E)(c : IR D E) -> Poly D
c / R = proj₁ (c IR-/ R)
forget/ : ∀ {D E} (F : Poly E)(c : IR D E) -> Info (F / c) -> Info F
forget/ c R = proj₂ (c IR-/ R)
_○_ : {X Y Z : Set1} -> IR Y Z -> IR X Y -> IR X Z
(S , f) ○ d = (S / d , f ∘ forget/ S d)
mutual
left0 : {D E : Set1} -> (F : Poly E)(c : IR D E) -> {Z : Fam D} ->
Node (F / c) Z -> Node F (⟦ c ⟧ Z)
left0 idPN c x = x
left0 (con A) c a = a
left0 (sigma S T) c {Z} (x , y)
= left0 S c x , subst (λ z → Node (T z) (⟦ c ⟧ Z))
(left1 S c x)
(left0 (T (forget/ S c (info (S / c) Z x))) c y)
left0 (pi A T) c f = λ a → left0 (T a) c (f a)
left1 : {D E : Set1} -> (F : Poly E)(c : IR D E) -> {Z : Fam D} ->
(x : Node (F / c) Z) ->
forget/ F c (info (F / c) Z x) ≡ info F (⟦ c ⟧ Z) (left0 F c x)
left1 idPN c x = refl
left1 (con A) c a = refl
left1 (sigma S T) c {Z } (x , y)
= Σ-≡ (left1 S c x)
(trans (cong (subst (λ z → Info (T z)) (left1 S c x))
(left1 (T (forget/ S c (info (S / c) Z x))) c y))
(subst-natural (λ {y} → info (T y) (⟦ c ⟧ Z))
(left1 S c x)))
left1 (pi A T) c f = ext (λ a → left1 (T a) c (f a))
mutual
right0 : {D E : Set1} -> (F : Poly E)(c : IR D E) -> {Z : Fam D} ->
Node F (⟦ c ⟧ Z) -> Node (F / c) Z
right0 idPN c x = x
right0 (con A) c a = a
right0 (sigma S T) c {Z} (x , y)
= right0 S c x , subst (λ z → Node (T z / c) Z)
(right1 S c x)
(right0 (T (info S (⟦ c ⟧ Z) x)) c y)
right0 (pi A T) c f = λ a → right0 (T a) c (f a)
right1 : {D E : Set1} -> (F : Poly E)(c : IR D E) -> {Z : Fam D} ->
(x : Node F (⟦ c ⟧ Z)) ->
info F (⟦ c ⟧ Z) x ≡ forget/ F c (info (F / c) Z (right0 F c x))
right1 idPN c x = refl
right1 (con A) c a = refl
right1 (sigma S T) c {Z} (x , y)
= Σ-≡ (right1 S c x)
(trans (cong (subst (λ z → Info (T z)) (right1 S c x))
(right1 (T (info S (⟦ c ⟧ Z) x)) c y))
(subst-natural (λ {y} → forget/ (T y) c ∘ (info (T y / c) Z))
(right1 S c x)))
right1 (pi A T) c f = ext (λ a → right1 (T a) c (f a))
mutual
leftright0 : {D E : Set1} -> (F : Poly E)(c : IR D E) -> {Z : Fam D} ->
(x : Node F (⟦ c ⟧ Z)) -> x ≡ left0 F c (right0 F c x)
leftright0 idPN c x = refl
leftright0 (con A) c a = refl
leftright0 (sigma S T) c {Z} (x , y)
= Σ-≡ (leftright0 S c x)
(trans
(subst-cong (leftright0 S c x))
(trans
(congSubst (sym (leftright1 S c x)))
(trans
(subst-trans (right1 S c x) (left1 S c (right0 S c x)))
(cong (subst (λ v → Node (T v) (⟦ c ⟧ Z))
(left1 S c (right0 S c x)))
(trans
(cong (subst (λ v → Node (T v) (⟦ c ⟧ Z))
(right1 S c x))
(leftright0 (T _) c y))
(subst-natural (λ {y} → left0 (T y) c)
(right1 S c x))) ))))
leftright0 (pi A T) c f = ext (λ a → leftright0 (T a) c (f a))
leftright1 : {D E : Set1} -> (F : Poly E)(c : IR D E) -> {Z : Fam D} ->
(x : Node F (⟦ c ⟧ Z)) ->
trans (right1 F c x) (left1 F c (right0 F c x))
≡ cong (info F (⟦ c ⟧ Z)) (leftright0 F c x)
leftright1 idPN c x = refl
leftright1 (con A) c a = refl
leftright1 (sigma S T) c (x , y) = UIP _ _
leftright1 (pi A T) c {Z} f
= trans
(trans-ext (λ a → right1 (T a) c (f a))
(λ a → left1 (T a) c (right0 (T a) c (f a))))
(eq-extensionality (λ a →
trans
(ext-β _ a)
(trans
(leftright1 (T a) c (f a))
(trans
(cong (cong (info (T a) (⟦ c ⟧ Z))) (sym (ext-β _ a)))
((trans (sym (cong-cong _)) (cong-cong _)))))))
mutual
rightleft0 : {D E : Set1} -> (F : Poly E)(c : IR D E) -> {Z : Fam D} ->
(x : Node (F / c) Z) -> x ≡ right0 F c (left0 F c x)
rightleft0 idPN c x = refl
rightleft0 (con A) c a = refl
rightleft0 (sigma S T) c {Z} (x , y)
= Σ-≡ (rightleft0 S c x)
(trans
(subst-cong (rightleft0 S c x))
(trans
(congSubst (sym (rightleft1 S c x)))
(trans
(subst-trans (left1 S c x) (right1 S c (left0 S c x)))
(cong (subst (λ z → Node (T z / c) Z)
(right1 S c (left0 S c x)))
(trans
(cong (subst (λ v → Node (T v / c) Z) (left1 S c x))
(rightleft0 (T _) c y))
(subst-natural (λ {y} → right0 (T y) c)
(left1 S c x)))))))
rightleft0 (pi A T) c f = ext (λ a → rightleft0 (T a) c (f a))
rightleft1 : {D E : Set1} -> (F : Poly E)(c : IR D E) -> {Z : Fam D} ->
(x : Node (F / c) Z) ->
trans (left1 F c x) (right1 F c (left0 F c x))
≡ cong (forget/ F c ∘ (info (F / c) Z)) (rightleft0 F c x)
rightleft1 F c x = UIP _ _
○-equiv : {X Y Z : Set1} -> (c : IR Y Z) -> (d : IR X Y) -> {Z : Fam X} ->
⟦ c ○ d ⟧ Z ≃ ⟦ c ⟧ (⟦ d ⟧ Z)
○-equiv R@(c , α) d
= record { left = left0 c d , (cong α ∘ (left1 c d))
; right = right0 c d , (cong α ∘ (right1 c d))
; leftright = comp-is-id-ext
(left0 c d , (cong α ∘ (left1 c d)))
(right0 c d , (cong α ∘ (right1 c d)))
(leftright0 c d)
(λ x → trans
(trans-cong (right1 c d x)
(left1 c d (right0 c d x)))
(trans
(cong (cong α) (leftright1 c d x))
(sym (cong-cong {f = α}
(leftright0 c d x)))))
; rightleft = comp-is-id-ext
(right0 c d , (cong α ∘ (right1 c d)))
(left0 c d , (cong α ∘ (left1 c d)))
(rightleft0 c d)
(λ x → trans
(trans-cong (left1 c d x)
(right1 c d (left0 c d x)))
(trans
(cong (cong α) (rightleft1 c d x))
(sym (cong-cong {f = α}
(rightleft0 c d x)))))
}