open import Algebra
open import Algebra.RingSolver.AlmostCommutativeRing
open import Relation.Binary
module Algebra.RingSolver
{r₁ r₂ r₃}
(Coeff : RawRing r₁)
(R : AlmostCommutativeRing r₂ r₃)
(morphism : Coeff -Raw-AlmostCommutative⟶ R)
(_coeff≟_ : Decidable (Induced-equivalence morphism))
where
import Algebra.RingSolver.Lemmas as L; open L Coeff R morphism
private module C = RawRing Coeff
open AlmostCommutativeRing R renaming (zero to zero*)
import Algebra.FunctionProperties as P; open P _≈_
open import Algebra.Morphism
open _-Raw-AlmostCommutative⟶_ morphism renaming (⟦_⟧ to ⟦_⟧′)
import Algebra.Operations as Ops; open Ops semiring
open import Relation.Binary
open import Relation.Nullary
import Relation.Binary.EqReasoning as EqR; open EqR setoid
import Relation.Binary.PropositionalEquality as PropEq
import Relation.Binary.Reflection as Reflection
open import Data.Empty
open import Data.Product
open import Data.Nat.Base as Nat using (ℕ; suc; zero)
open import Data.Fin as Fin using (Fin; zero; suc)
open import Data.Vec
open import Function
open import Level using (_⊔_)
infix 9 :-_ -H_ -N_
infixr 9 _:^_ _^N_
infix 8 _*x+_ _*x+HN_ _*x+H_
infixl 8 _:*_ _*N_ _*H_ _*NH_ _*HN_
infixl 7 _:+_ _:-_ _+H_ _+N_
infix 4 _≈H_ _≈N_
data Op : Set where
[+] : Op
[*] : Op
data Polynomial (m : ℕ) : Set r₁ where
op : (o : Op) (p₁ : Polynomial m) (p₂ : Polynomial m) → Polynomial m
con : (c : C.Carrier) → Polynomial m
var : (x : Fin m) → Polynomial m
_:^_ : (p : Polynomial m) (n : ℕ) → Polynomial m
:-_ : (p : Polynomial m) → Polynomial m
_:+_ : ∀ {n} → Polynomial n → Polynomial n → Polynomial n
_:+_ = op [+]
_:*_ : ∀ {n} → Polynomial n → Polynomial n → Polynomial n
_:*_ = op [*]
_:-_ : ∀ {n} → Polynomial n → Polynomial n → Polynomial n
x :- y = x :+ :- y
sem : Op → Op₂ Carrier
sem [+] = _+_
sem [*] = _*_
⟦_⟧ : ∀ {n} → Polynomial n → Vec Carrier n → Carrier
⟦ op o p₁ p₂ ⟧ ρ = ⟦ p₁ ⟧ ρ ⟨ sem o ⟩ ⟦ p₂ ⟧ ρ
⟦ con c ⟧ ρ = ⟦ c ⟧′
⟦ var x ⟧ ρ = lookup x ρ
⟦ p :^ n ⟧ ρ = ⟦ p ⟧ ρ ^ n
⟦ :- p ⟧ ρ = - ⟦ p ⟧ ρ
mutual
data HNF : ℕ → Set r₁ where
∅ : ∀ {n} → HNF (suc n)
_*x+_ : ∀ {n} → HNF (suc n) → Normal n → HNF (suc n)
data Normal : ℕ → Set r₁ where
con : C.Carrier → Normal zero
poly : ∀ {n} → HNF (suc n) → Normal (suc n)
mutual
⟦_⟧H : ∀ {n} → HNF (suc n) → Vec Carrier (suc n) → Carrier
⟦ ∅ ⟧H _ = 0#
⟦ p *x+ c ⟧H (x ∷ ρ) = ⟦ p ⟧H (x ∷ ρ) * x + ⟦ c ⟧N ρ
⟦_⟧N : ∀ {n} → Normal n → Vec Carrier n → Carrier
⟦ con c ⟧N _ = ⟦ c ⟧′
⟦ poly p ⟧N ρ = ⟦ p ⟧H ρ
mutual
data _≈H_ : ∀ {n} → HNF n → HNF n → Set (r₁ ⊔ r₃) where
∅ : ∀ {n} → _≈H_ {suc n} ∅ ∅
_*x+_ : ∀ {n} {p₁ p₂ : HNF (suc n)} {c₁ c₂ : Normal n} →
p₁ ≈H p₂ → c₁ ≈N c₂ → (p₁ *x+ c₁) ≈H (p₂ *x+ c₂)
data _≈N_ : ∀ {n} → Normal n → Normal n → Set (r₁ ⊔ r₃) where
con : ∀ {c₁ c₂} → ⟦ c₁ ⟧′ ≈ ⟦ c₂ ⟧′ → con c₁ ≈N con c₂
poly : ∀ {n} {p₁ p₂ : HNF (suc n)} → p₁ ≈H p₂ → poly p₁ ≈N poly p₂
mutual
_≟H_ : ∀ {n} → Decidable (_≈H_ {n = n})
∅ ≟H ∅ = yes ∅
∅ ≟H (_ *x+ _) = no λ()
(_ *x+ _) ≟H ∅ = no λ()
(p₁ *x+ c₁) ≟H (p₂ *x+ c₂) with p₁ ≟H p₂ | c₁ ≟N c₂
... | yes p₁≈p₂ | yes c₁≈c₂ = yes (p₁≈p₂ *x+ c₁≈c₂)
... | _ | no c₁≉c₂ = no λ { (_ *x+ c₁≈c₂) → c₁≉c₂ c₁≈c₂ }
... | no p₁≉p₂ | _ = no λ { (p₁≈p₂ *x+ _) → p₁≉p₂ p₁≈p₂ }
_≟N_ : ∀ {n} → Decidable (_≈N_ {n = n})
con c₁ ≟N con c₂ with c₁ coeff≟ c₂
... | yes c₁≈c₂ = yes (con c₁≈c₂)
... | no c₁≉c₂ = no λ { (con c₁≈c₂) → c₁≉c₂ c₁≈c₂}
poly p₁ ≟N poly p₂ with p₁ ≟H p₂
... | yes p₁≈p₂ = yes (poly p₁≈p₂)
... | no p₁≉p₂ = no λ { (poly p₁≈p₂) → p₁≉p₂ p₁≈p₂ }
mutual
⟦_⟧H-cong : ∀ {n} {p₁ p₂ : HNF (suc n)} →
p₁ ≈H p₂ → ∀ ρ → ⟦ p₁ ⟧H ρ ≈ ⟦ p₂ ⟧H ρ
⟦ ∅ ⟧H-cong _ = refl
⟦ p₁≈p₂ *x+ c₁≈c₂ ⟧H-cong (x ∷ ρ) =
(⟦ p₁≈p₂ ⟧H-cong (x ∷ ρ) ⟨ *-cong ⟩ refl)
⟨ +-cong ⟩
⟦ c₁≈c₂ ⟧N-cong ρ
⟦_⟧N-cong :
∀ {n} {p₁ p₂ : Normal n} →
p₁ ≈N p₂ → ∀ ρ → ⟦ p₁ ⟧N ρ ≈ ⟦ p₂ ⟧N ρ
⟦ con c₁≈c₂ ⟧N-cong _ = c₁≈c₂
⟦ poly p₁≈p₂ ⟧N-cong ρ = ⟦ p₁≈p₂ ⟧H-cong ρ
0H : ∀ {n} → HNF (suc n)
0H = ∅
0N : ∀ {n} → Normal n
0N {zero} = con C.0#
0N {suc n} = poly 0H
mutual
1H : ∀ {n} → HNF (suc n)
1H {n} = ∅ *x+ 1N {n}
1N : ∀ {n} → Normal n
1N {zero} = con C.1#
1N {suc n} = poly 1H
_*x+HN_ : ∀ {n} → HNF (suc n) → Normal n → HNF (suc n)
(p *x+ c′) *x+HN c = (p *x+ c′) *x+ c
∅ *x+HN c with c ≟N 0N
... | yes c≈0 = ∅
... | no c≉0 = ∅ *x+ c
mutual
_+H_ : ∀ {n} → HNF (suc n) → HNF (suc n) → HNF (suc n)
∅ +H p = p
p +H ∅ = p
(p₁ *x+ c₁) +H (p₂ *x+ c₂) = (p₁ +H p₂) *x+HN (c₁ +N c₂)
_+N_ : ∀ {n} → Normal n → Normal n → Normal n
con c₁ +N con c₂ = con (c₁ C.+ c₂)
poly p₁ +N poly p₂ = poly (p₁ +H p₂)
_*x+H_ : ∀ {n} → HNF (suc n) → HNF (suc n) → HNF (suc n)
p₁ *x+H (p₂ *x+ c) = (p₁ +H p₂) *x+HN c
∅ *x+H ∅ = ∅
(p₁ *x+ c) *x+H ∅ = (p₁ *x+ c) *x+ 0N
mutual
_*NH_ : ∀ {n} → Normal n → HNF (suc n) → HNF (suc n)
c *NH ∅ = ∅
c *NH (p *x+ c′) with c ≟N 0N
... | yes c≈0 = ∅
... | no c≉0 = (c *NH p) *x+ (c *N c′)
_*HN_ : ∀ {n} → HNF (suc n) → Normal n → HNF (suc n)
∅ *HN c = ∅
(p *x+ c′) *HN c with c ≟N 0N
... | yes c≈0 = ∅
... | no c≉0 = (p *HN c) *x+ (c′ *N c)
_*H_ : ∀ {n} → HNF (suc n) → HNF (suc n) → HNF (suc n)
∅ *H _ = ∅
(_ *x+ _) *H ∅ = ∅
(p₁ *x+ c₁) *H (p₂ *x+ c₂) =
((p₁ *H p₂) *x+H (p₁ *HN c₂ +H c₁ *NH p₂)) *x+HN (c₁ *N c₂)
_*N_ : ∀ {n} → Normal n → Normal n → Normal n
con c₁ *N con c₂ = con (c₁ C.* c₂)
poly p₁ *N poly p₂ = poly (p₁ *H p₂)
_^N_ : ∀ {n} → Normal n → ℕ → Normal n
p ^N zero = 1N
p ^N suc n = p *N (p ^N n)
mutual
-H_ : ∀ {n} → HNF (suc n) → HNF (suc n)
-H p = (-N 1N) *NH p
-N_ : ∀ {n} → Normal n → Normal n
-N con c = con (C.- c)
-N poly p = poly (-H p)
normalise-con : ∀ {n} → C.Carrier → Normal n
normalise-con {zero} c = con c
normalise-con {suc n} c = poly (∅ *x+HN normalise-con c)
normalise-var : ∀ {n} → Fin n → Normal n
normalise-var zero = poly ((∅ *x+ 1N) *x+ 0N)
normalise-var (suc i) = poly (∅ *x+HN normalise-var i)
normalise : ∀ {n} → Polynomial n → Normal n
normalise (op [+] t₁ t₂) = normalise t₁ +N normalise t₂
normalise (op [*] t₁ t₂) = normalise t₁ *N normalise t₂
normalise (con c) = normalise-con c
normalise (var i) = normalise-var i
normalise (t :^ k) = normalise t ^N k
normalise (:- t) = -N normalise t
⟦_⟧↓ : ∀ {n} → Polynomial n → Vec Carrier n → Carrier
⟦ p ⟧↓ ρ = ⟦ normalise p ⟧N ρ
0N-homo : ∀ {n} ρ → ⟦ 0N {n} ⟧N ρ ≈ 0#
0N-homo [] = 0-homo
0N-homo (x ∷ ρ) = refl
0≈⟦0⟧ : ∀ {n} {c : Normal n} → c ≈N 0N → ∀ ρ → 0# ≈ ⟦ c ⟧N ρ
0≈⟦0⟧ {c = c} c≈0 ρ = sym (begin
⟦ c ⟧N ρ ≈⟨ ⟦ c≈0 ⟧N-cong ρ ⟩
⟦ 0N ⟧N ρ ≈⟨ 0N-homo ρ ⟩
0# ∎)
1N-homo : ∀ {n} ρ → ⟦ 1N {n} ⟧N ρ ≈ 1#
1N-homo [] = 1-homo
1N-homo (x ∷ ρ) = begin
0# * x + ⟦ 1N ⟧N ρ ≈⟨ refl ⟨ +-cong ⟩ 1N-homo ρ ⟩
0# * x + 1# ≈⟨ lemma₆ _ _ ⟩
1# ∎
*x+HN≈*x+ : ∀ {n} (p : HNF (suc n)) (c : Normal n) →
∀ ρ → ⟦ p *x+HN c ⟧H ρ ≈ ⟦ p *x+ c ⟧H ρ
*x+HN≈*x+ (p *x+ c′) c ρ = refl
*x+HN≈*x+ ∅ c (x ∷ ρ) with c ≟N 0N
... | yes c≈0 = begin
0# ≈⟨ 0≈⟦0⟧ c≈0 ρ ⟩
⟦ c ⟧N ρ ≈⟨ sym $ lemma₆ _ _ ⟩
0# * x + ⟦ c ⟧N ρ ∎
... | no c≉0 = refl
∅*x+HN-homo : ∀ {n} (c : Normal n) x ρ →
⟦ ∅ *x+HN c ⟧H (x ∷ ρ) ≈ ⟦ c ⟧N ρ
∅*x+HN-homo c x ρ with c ≟N 0N
... | yes c≈0 = 0≈⟦0⟧ c≈0 ρ
... | no c≉0 = lemma₆ _ _
mutual
+H-homo : ∀ {n} (p₁ p₂ : HNF (suc n)) →
∀ ρ → ⟦ p₁ +H p₂ ⟧H ρ ≈ ⟦ p₁ ⟧H ρ + ⟦ p₂ ⟧H ρ
+H-homo ∅ p₂ ρ = sym (proj₁ +-identity _)
+H-homo (p₁ *x+ x₁) ∅ ρ = sym (proj₂ +-identity _)
+H-homo (p₁ *x+ c₁) (p₂ *x+ c₂) (x ∷ ρ) = begin
⟦ (p₁ +H p₂) *x+HN (c₁ +N c₂) ⟧H (x ∷ ρ) ≈⟨ *x+HN≈*x+ (p₁ +H p₂) (c₁ +N c₂) (x ∷ ρ) ⟩
⟦ p₁ +H p₂ ⟧H (x ∷ ρ) * x + ⟦ c₁ +N c₂ ⟧N ρ ≈⟨ (+H-homo p₁ p₂ (x ∷ ρ) ⟨ *-cong ⟩ refl) ⟨ +-cong ⟩ +N-homo c₁ c₂ ρ ⟩
(⟦ p₁ ⟧H (x ∷ ρ) + ⟦ p₂ ⟧H (x ∷ ρ)) * x + (⟦ c₁ ⟧N ρ + ⟦ c₂ ⟧N ρ) ≈⟨ lemma₁ _ _ _ _ _ ⟩
(⟦ p₁ ⟧H (x ∷ ρ) * x + ⟦ c₁ ⟧N ρ) +
(⟦ p₂ ⟧H (x ∷ ρ) * x + ⟦ c₂ ⟧N ρ) ∎
+N-homo : ∀ {n} (p₁ p₂ : Normal n) →
∀ ρ → ⟦ p₁ +N p₂ ⟧N ρ ≈ ⟦ p₁ ⟧N ρ + ⟦ p₂ ⟧N ρ
+N-homo (con c₁) (con c₂) _ = +-homo _ _
+N-homo (poly p₁) (poly p₂) ρ = +H-homo p₁ p₂ ρ
*x+H-homo :
∀ {n} (p₁ p₂ : HNF (suc n)) x ρ →
⟦ p₁ *x+H p₂ ⟧H (x ∷ ρ) ≈
⟦ p₁ ⟧H (x ∷ ρ) * x + ⟦ p₂ ⟧H (x ∷ ρ)
*x+H-homo ∅ ∅ _ _ = sym $ lemma₆ _ _
*x+H-homo (p *x+ c) ∅ x ρ = begin
⟦ p *x+ c ⟧H (x ∷ ρ) * x + ⟦ 0N ⟧N ρ ≈⟨ refl ⟨ +-cong ⟩ 0N-homo ρ ⟩
⟦ p *x+ c ⟧H (x ∷ ρ) * x + 0# ∎
*x+H-homo p₁ (p₂ *x+ c₂) x ρ = begin
⟦ (p₁ +H p₂) *x+HN c₂ ⟧H (x ∷ ρ) ≈⟨ *x+HN≈*x+ (p₁ +H p₂) c₂ (x ∷ ρ) ⟩
⟦ p₁ +H p₂ ⟧H (x ∷ ρ) * x + ⟦ c₂ ⟧N ρ ≈⟨ (+H-homo p₁ p₂ (x ∷ ρ) ⟨ *-cong ⟩ refl) ⟨ +-cong ⟩ refl ⟩
(⟦ p₁ ⟧H (x ∷ ρ) + ⟦ p₂ ⟧H (x ∷ ρ)) * x + ⟦ c₂ ⟧N ρ ≈⟨ lemma₀ _ _ _ _ ⟩
⟦ p₁ ⟧H (x ∷ ρ) * x + (⟦ p₂ ⟧H (x ∷ ρ) * x + ⟦ c₂ ⟧N ρ) ∎
mutual
*NH-homo :
∀ {n} (c : Normal n) (p : HNF (suc n)) x ρ →
⟦ c *NH p ⟧H (x ∷ ρ) ≈ ⟦ c ⟧N ρ * ⟦ p ⟧H (x ∷ ρ)
*NH-homo c ∅ x ρ = sym (proj₂ zero* _)
*NH-homo c (p *x+ c′) x ρ with c ≟N 0N
... | yes c≈0 = begin
0# ≈⟨ sym (proj₁ zero* _) ⟩
0# * (⟦ p ⟧H (x ∷ ρ) * x + ⟦ c′ ⟧N ρ) ≈⟨ 0≈⟦0⟧ c≈0 ρ ⟨ *-cong ⟩ refl ⟩
⟦ c ⟧N ρ * (⟦ p ⟧H (x ∷ ρ) * x + ⟦ c′ ⟧N ρ) ∎
... | no c≉0 = begin
⟦ c *NH p ⟧H (x ∷ ρ) * x + ⟦ c *N c′ ⟧N ρ ≈⟨ (*NH-homo c p x ρ ⟨ *-cong ⟩ refl) ⟨ +-cong ⟩ *N-homo c c′ ρ ⟩
(⟦ c ⟧N ρ * ⟦ p ⟧H (x ∷ ρ)) * x + (⟦ c ⟧N ρ * ⟦ c′ ⟧N ρ) ≈⟨ lemma₃ _ _ _ _ ⟩
⟦ c ⟧N ρ * (⟦ p ⟧H (x ∷ ρ) * x + ⟦ c′ ⟧N ρ) ∎
*HN-homo :
∀ {n} (p : HNF (suc n)) (c : Normal n) x ρ →
⟦ p *HN c ⟧H (x ∷ ρ) ≈ ⟦ p ⟧H (x ∷ ρ) * ⟦ c ⟧N ρ
*HN-homo ∅ c x ρ = sym (proj₁ zero* _)
*HN-homo (p *x+ c′) c x ρ with c ≟N 0N
... | yes c≈0 = begin
0# ≈⟨ sym (proj₂ zero* _) ⟩
(⟦ p ⟧H (x ∷ ρ) * x + ⟦ c′ ⟧N ρ) * 0# ≈⟨ refl ⟨ *-cong ⟩ 0≈⟦0⟧ c≈0 ρ ⟩
(⟦ p ⟧H (x ∷ ρ) * x + ⟦ c′ ⟧N ρ) * ⟦ c ⟧N ρ ∎
... | no c≉0 = begin
⟦ p *HN c ⟧H (x ∷ ρ) * x + ⟦ c′ *N c ⟧N ρ ≈⟨ (*HN-homo p c x ρ ⟨ *-cong ⟩ refl) ⟨ +-cong ⟩ *N-homo c′ c ρ ⟩
(⟦ p ⟧H (x ∷ ρ) * ⟦ c ⟧N ρ) * x + (⟦ c′ ⟧N ρ * ⟦ c ⟧N ρ) ≈⟨ lemma₂ _ _ _ _ ⟩
(⟦ p ⟧H (x ∷ ρ) * x + ⟦ c′ ⟧N ρ) * ⟦ c ⟧N ρ ∎
*H-homo : ∀ {n} (p₁ p₂ : HNF (suc n)) →
∀ ρ → ⟦ p₁ *H p₂ ⟧H ρ ≈ ⟦ p₁ ⟧H ρ * ⟦ p₂ ⟧H ρ
*H-homo ∅ p₂ ρ = sym $ proj₁ zero* _
*H-homo (p₁ *x+ c₁) ∅ ρ = sym $ proj₂ zero* _
*H-homo (p₁ *x+ c₁) (p₂ *x+ c₂) (x ∷ ρ) = begin
⟦ ((p₁ *H p₂) *x+H ((p₁ *HN c₂) +H (c₁ *NH p₂))) *x+HN
(c₁ *N c₂) ⟧H (x ∷ ρ) ≈⟨ *x+HN≈*x+ ((p₁ *H p₂) *x+H ((p₁ *HN c₂) +H (c₁ *NH p₂)))
(c₁ *N c₂) (x ∷ ρ) ⟩
⟦ (p₁ *H p₂) *x+H
((p₁ *HN c₂) +H (c₁ *NH p₂)) ⟧H (x ∷ ρ) * x +
⟦ c₁ *N c₂ ⟧N ρ ≈⟨ (*x+H-homo (p₁ *H p₂) ((p₁ *HN c₂) +H (c₁ *NH p₂)) x ρ
⟨ *-cong ⟩
refl)
⟨ +-cong ⟩
*N-homo c₁ c₂ ρ ⟩
(⟦ p₁ *H p₂ ⟧H (x ∷ ρ) * x +
⟦ (p₁ *HN c₂) +H (c₁ *NH p₂) ⟧H (x ∷ ρ)) * x +
⟦ c₁ ⟧N ρ * ⟦ c₂ ⟧N ρ ≈⟨ (((*H-homo p₁ p₂ (x ∷ ρ) ⟨ *-cong ⟩ refl)
⟨ +-cong ⟩
(+H-homo (p₁ *HN c₂) (c₁ *NH p₂) (x ∷ ρ)))
⟨ *-cong ⟩
refl)
⟨ +-cong ⟩
refl ⟩
(⟦ p₁ ⟧H (x ∷ ρ) * ⟦ p₂ ⟧H (x ∷ ρ) * x +
(⟦ p₁ *HN c₂ ⟧H (x ∷ ρ) + ⟦ c₁ *NH p₂ ⟧H (x ∷ ρ))) * x +
⟦ c₁ ⟧N ρ * ⟦ c₂ ⟧N ρ ≈⟨ ((refl ⟨ +-cong ⟩ (*HN-homo p₁ c₂ x ρ ⟨ +-cong ⟩ *NH-homo c₁ p₂ x ρ))
⟨ *-cong ⟩
refl)
⟨ +-cong ⟩
refl ⟩
(⟦ p₁ ⟧H (x ∷ ρ) * ⟦ p₂ ⟧H (x ∷ ρ) * x +
(⟦ p₁ ⟧H (x ∷ ρ) * ⟦ c₂ ⟧N ρ + ⟦ c₁ ⟧N ρ * ⟦ p₂ ⟧H (x ∷ ρ))) * x +
(⟦ c₁ ⟧N ρ * ⟦ c₂ ⟧N ρ) ≈⟨ lemma₄ _ _ _ _ _ ⟩
(⟦ p₁ ⟧H (x ∷ ρ) * x + ⟦ c₁ ⟧N ρ) *
(⟦ p₂ ⟧H (x ∷ ρ) * x + ⟦ c₂ ⟧N ρ) ∎
*N-homo : ∀ {n} (p₁ p₂ : Normal n) →
∀ ρ → ⟦ p₁ *N p₂ ⟧N ρ ≈ ⟦ p₁ ⟧N ρ * ⟦ p₂ ⟧N ρ
*N-homo (con c₁) (con c₂) _ = *-homo _ _
*N-homo (poly p₁) (poly p₂) ρ = *H-homo p₁ p₂ ρ
^N-homo : ∀ {n} (p : Normal n) (k : ℕ) →
∀ ρ → ⟦ p ^N k ⟧N ρ ≈ ⟦ p ⟧N ρ ^ k
^N-homo p zero ρ = 1N-homo ρ
^N-homo p (suc k) ρ = begin
⟦ p *N (p ^N k) ⟧N ρ ≈⟨ *N-homo p (p ^N k) ρ ⟩
⟦ p ⟧N ρ * ⟦ p ^N k ⟧N ρ ≈⟨ refl ⟨ *-cong ⟩ ^N-homo p k ρ ⟩
⟦ p ⟧N ρ * (⟦ p ⟧N ρ ^ k) ∎
mutual
-H‿-homo : ∀ {n} (p : HNF (suc n)) →
∀ ρ → ⟦ -H p ⟧H ρ ≈ - ⟦ p ⟧H ρ
-H‿-homo p (x ∷ ρ) = begin
⟦ (-N 1N) *NH p ⟧H (x ∷ ρ) ≈⟨ *NH-homo (-N 1N) p x ρ ⟩
⟦ -N 1N ⟧N ρ * ⟦ p ⟧H (x ∷ ρ) ≈⟨ trans (-N‿-homo 1N ρ) (-‿cong (1N-homo ρ)) ⟨ *-cong ⟩ refl ⟩
- 1# * ⟦ p ⟧H (x ∷ ρ) ≈⟨ lemma₇ _ ⟩
- ⟦ p ⟧H (x ∷ ρ) ∎
-N‿-homo : ∀ {n} (p : Normal n) →
∀ ρ → ⟦ -N p ⟧N ρ ≈ - ⟦ p ⟧N ρ
-N‿-homo (con c) _ = -‿homo _
-N‿-homo (poly p) ρ = -H‿-homo p ρ
correct-con : ∀ {n} (c : C.Carrier) (ρ : Vec Carrier n) →
⟦ normalise-con c ⟧N ρ ≈ ⟦ c ⟧′
correct-con c [] = refl
correct-con c (x ∷ ρ) = begin
⟦ ∅ *x+HN normalise-con c ⟧H (x ∷ ρ) ≈⟨ ∅*x+HN-homo (normalise-con c) x ρ ⟩
⟦ normalise-con c ⟧N ρ ≈⟨ correct-con c ρ ⟩
⟦ c ⟧′ ∎
correct-var : ∀ {n} (i : Fin n) →
∀ ρ → ⟦ normalise-var i ⟧N ρ ≈ lookup i ρ
correct-var () []
correct-var (suc i) (x ∷ ρ) = begin
⟦ ∅ *x+HN normalise-var i ⟧H (x ∷ ρ) ≈⟨ ∅*x+HN-homo (normalise-var i) x ρ ⟩
⟦ normalise-var i ⟧N ρ ≈⟨ correct-var i ρ ⟩
lookup i ρ ∎
correct-var zero (x ∷ ρ) = begin
(0# * x + ⟦ 1N ⟧N ρ) * x + ⟦ 0N ⟧N ρ ≈⟨ ((refl ⟨ +-cong ⟩ 1N-homo ρ) ⟨ *-cong ⟩ refl) ⟨ +-cong ⟩ 0N-homo ρ ⟩
(0# * x + 1#) * x + 0# ≈⟨ lemma₅ _ ⟩
x ∎
correct : ∀ {n} (p : Polynomial n) → ∀ ρ → ⟦ p ⟧↓ ρ ≈ ⟦ p ⟧ ρ
correct (op [+] p₁ p₂) ρ = begin
⟦ normalise p₁ +N normalise p₂ ⟧N ρ ≈⟨ +N-homo (normalise p₁) (normalise p₂) ρ ⟩
⟦ p₁ ⟧↓ ρ + ⟦ p₂ ⟧↓ ρ ≈⟨ correct p₁ ρ ⟨ +-cong ⟩ correct p₂ ρ ⟩
⟦ p₁ ⟧ ρ + ⟦ p₂ ⟧ ρ ∎
correct (op [*] p₁ p₂) ρ = begin
⟦ normalise p₁ *N normalise p₂ ⟧N ρ ≈⟨ *N-homo (normalise p₁) (normalise p₂) ρ ⟩
⟦ p₁ ⟧↓ ρ * ⟦ p₂ ⟧↓ ρ ≈⟨ correct p₁ ρ ⟨ *-cong ⟩ correct p₂ ρ ⟩
⟦ p₁ ⟧ ρ * ⟦ p₂ ⟧ ρ ∎
correct (con c) ρ = correct-con c ρ
correct (var i) ρ = correct-var i ρ
correct (p :^ k) ρ = begin
⟦ normalise p ^N k ⟧N ρ ≈⟨ ^N-homo (normalise p) k ρ ⟩
⟦ p ⟧↓ ρ ^ k ≈⟨ correct p ρ ⟨ ^-cong ⟩ PropEq.refl {x = k} ⟩
⟦ p ⟧ ρ ^ k ∎
correct (:- p) ρ = begin
⟦ -N normalise p ⟧N ρ ≈⟨ -N‿-homo (normalise p) ρ ⟩
- ⟦ p ⟧↓ ρ ≈⟨ -‿cong (correct p ρ) ⟩
- ⟦ p ⟧ ρ ∎
open Reflection setoid var ⟦_⟧ ⟦_⟧↓ correct public
using (prove; solve) renaming (_⊜_ to _:=_)